Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 58, 2020 - Issue 9
1,155
Views
23
CrossRef citations to date
0
Altmetric
Articles

A data-driven method for estimating wheel flat length

ORCID Icon, , &
Pages 1329-1347 | Received 21 Jan 2019, Accepted 11 May 2019, Published online: 22 May 2019

References

  • Li Y, Zuo MJ, Lin J, et al. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter. Mech Syst Signal Pr. 2017;84:642–658. doi: 10.1016/j.ymssp.2016.07.009
  • Jérgeus J, Odenmark C, Lundén R, et al. Full-scale railway wheel flat experiments. P I Mech Eng F-J RAI. 1999;213:1–13.
  • Sackfield A, Dini D, Hills D. Contact of a rotating wheel with a flat. Int J Solids Struct. 2007;44:3304–3316. doi: 10.1016/j.ijsolstr.2006.09.025
  • Hecht M, Mitusch K. Lärm des Schienengüterverkehrs - wie weiter nach Einführung der Verbundbremssohle? ZEVrail. 2017 Aug;141:294–300.
  • Appel P, Hecht M. Möglichkeiten zur Lärmminderung des Schienengüterverkehrs in Deutschland. Lärmbekämpfung. 2017 Mär;12:47–56.
  • Steenbergen MJ. The role of the contact geometry in wheel–rail impact due to wheel flats: part II. Vehicle Syst Dyn. 2008;46:713–737. doi: 10.1080/00423110701584027
  • Bian J, Gu Y, Murray MH. A dynamic wheel–rail impact analysis of railway track under wheel flat by finite element analysis. Vehicle Syst Dyn. 2013;51:784–797. doi: 10.1080/00423114.2013.774031
  • Zhu JJ, Ahmed AKW, Rakheja S, et al. Impact load due to railway wheels with multiple flats predicted using an adaptive contact model. P I Mech Eng F-J RAI. 2009;223:391–403.
  • Iwnicki S. Handbook of railway vehicle dynamics. Boca Raton (FL): CRC Press; 2006.
  • Hecht M. Den Lärm an der Quelle mindern. ETR. 2015;10:10–13. http://www.laermorama.ch/m5_krachmacher/pdf/2015_Interview_Hecht.pdf
  • Milković D, Simić G, Jakovljević Ž, et al. Wayside system for wheel–rail contact forces measurements. Meas. 2013;46:3308–3318. doi: 10.1016/j.measurement.2013.06.017
  • Brizuela J, Fritsch C, Ibáñez A. Railway wheel-flat detection and measurement by ultrasound. Transport Res C-Emer. 2011;19:975–984. doi: 10.1016/j.trc.2011.04.004
  • Gullers P, Dreik P, Nielsen JCO, et al. Track condition analyser: identification of rail rolling surface defects, likely to generate fatigue damage in wheels, using instrumented wheelset measurements. P I Mech Eng F-J RAI. 2011;225:1–13.
  • Sun Y, Cole C, Bosomworth C. Early detection of wheel flats using wagon body acceleration measurements. CORE 2010 Conference on Railway Engineering: Rail – Rejuvenation and Renaissance, Conference Proceedings; 2010 Sep; Wellington, New Zealand. p. 230–239.
  • Liang B, Iwnicki SD, Zhao Y, et al. Railway wheel-flat and rail surface defect modelling and analysis by time–frequency techniques. Vehicle Syst Dyn. 2013;51:1403–1421. doi: 10.1080/00423114.2013.804192
  • Jing L, Han L. Further study on the wheel–rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress. Vehicle Syst Dyn. 2017;55:1946–1972. doi: 10.1080/00423114.2017.1340651
  • Bosso N, Gugliotta A, Zampieri N. Wheel flat detection algorithm for onboard diagnostic. Meas. 2018;123:193–202. doi: 10.1016/j.measurement.2018.03.072
  • Reilly K. Railway wheelsets. London: Rail Safety and Standards Board; 2003.
  • Belotti V, Crenna F, Michelini RC, et al. Wheel-flat diagnostic tool via wavelet transform. Mech Syst Signal Pr. 2006;20:1953–1966. doi: 10.1016/j.ymssp.2005.12.012
  • Bogdevicius M, Zygiene R, Bureika G, et al. An analytical mathematical method for calculation of the dynamic wheel–rail impact force caused by wheel flat. Vehicle Syst Dyn. 2016;54:689–705. doi: 10.1080/00423114.2016.1153114
  • Nielsen JCO, Johansson A. Out-of-round railway wheels- a literature survey. P I Mech Eng F-J RAI. 2001;2(214):79–91.
  • Ren Z. An investigation on wheel/rail impact dynamics with a three-dimensional flat model. Vehicle Syst Dyn. 2019;57(3):369–388. doi: 10.1080/00423114.2018.1469774
  • Nobari A, Ouyang H, Bannister P. Uncertainty quantification of squeal instability via surrogate modelling. Mech Syst Signal Pr. 2015;60–61:887–908. doi: 10.1016/j.ymssp.2015.01.022
  • Chowdhury R, Adhikari S. Fuzzy parametric uncertainty analysis of linear dynamical systems: a surrogate modeling approach. Mech Syst Signal Pr. 2012;32:5–17. doi: 10.1016/j.ymssp.2012.05.002
  • Hussain MS, Javadi AA, Ahangar-Asr A, et al. A surrogate model for simulation–optimization of aquifer systems subjected to seawater intrusion. J Hydrol. 2015;523:542–554. doi: 10.1016/j.jhydrol.2015.01.079
  • Christelis V, Mantoglou A. Pumping optimization of coastal aquifers assisted by adaptive meta modelling methods and radial basis functions. Water Resour Manag. 2016;30:5845–5859. doi: 10.1007/s11269-016-1337-3
  • Kourakos G, Mantoglou A. Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models. Adv Water Resour. 2009;32:507–521. doi: 10.1016/j.advwatres.2009.01.001
  • Simpson TW, Mauery TM, Korte J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J. 2001;39:2233–2241. doi: 10.2514/2.1234
  • Nie Y, Tang Z, Liu F, et al. A data-driven dynamics simulation framework for railway vehicles. Vehicle Syst Dyn. 2018;56:406–427. doi: 10.1080/00423114.2017.1381981
  • Fateh MM, Zirkohi MM. Adaptive impedance control of a hydraulic suspension system using particle swarm optimisation. Vehicle Syst Dyn. 2011;49:1951–1965. doi: 10.1080/00423114.2011.564289
  • Wang QB, Ning J, Ye YG, et al. Crack identification of high-speed train gearbox based on surrogate model. China Meas Test. 2018;44:131–136.
  • Drehmer LRC, Casas WJP, Gomes HM. Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm. Vehicle Syst Dyn. 2015 Feb;53(4):449–474. doi: 10.1080/00423114.2014.1002503
  • Han DEJ, Qiu A, Zhu H, et al. Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system. Appl Therm Eng. 2018;132:508–520. doi: 10.1016/j.applthermaleng.2017.12.123
  • Roshanian J, Ebrahimi M. Latin hypercube sampling applied to reliability-based multidisciplinary design optimization of a launch vehicle. Aerosp Sci Technol. 2013;28(1):297–304. doi: 10.1016/j.ast.2012.11.010
  • Xin C, Lu Q, Ai C, et al. Optimization of hard modified asphalt formula for gussasphalt based on uniform experimental design. Constr Build Mater. 2017;136:556–564. doi: 10.1016/j.conbuildmat.2017.01.068
  • Zhai WM, Wang QC, Lu ZW, et al. Dynamic effects of vehicles on tracks in the case of raising train speeds. P I Mech Eng F-J RAI. 2001;215:125–135. doi: 10.1243/0954411011533580
  • Lyon D. The calculation of track forces due to dipped rail joints, wheel flats and rail welds. In Second ORE Colloquium on Technical Computer Programs; 1972 May.
  • Hecht M, Keudel J, Friedrich D. Dokumentation der Messfahrten aus Juni 2006. Technische Universität Berlin; 2006 (Report No. 12/2006).
  • Hecht M, Krause P. BMBF-Forschungsprojekt Energieautarke Sensorsysteme zur Zustandsüberwachung am Güterwagen (ESZüG). Technische Universität Berlin; 2016 (Report No. 12/2016).
  • Hecht M, Keudel J. Numerische Simulation eines Selbstentladewagens mit Y25-Drehgestellen; 2005 (Report No. 31/2005).
  • Hecht M, Schelle H. Simulation von Kesselwagen mit Y25-Drehgestellen bei Gleislagefehlern. Technische Universität Berlin; 2006 (Report No. 16/2006).
  • Sohr S, Jeong M, Hecht M. Entwicklung eines Simulationstools zur Auslegung lärmarmer Gleiskonstruktionen. Technische Universität Berlin; 2017 (Report No. 20/2017).
  • Sohr S, Hecht M. Zusammenfassung des Arbeitsstandes. Technische Universität Berlin; 2017 (Report No. 04/2017).
  • Xu L, Zhai W, Chen Z. On use of characteristic wavelengths of track irregularities to predict track portions with deteriorated wheel/rail forces. Mech Syst Signal Pr. 2018;104:264–278. doi: 10.1016/j.ymssp.2017.10.038
  • Ye YG, Ning J. Small-amplitude hunting diagnosis method for high-speed trains based on the bogie frame’s lateral–longitudinal–vertical data fusion, independent mode function reconstruction and linear local tangent space alignment. P I Mech Eng F-J RAI. 2019:1–18. doi: 10.1177/0954409718825412
  • Braghin F, Bruni S, Diana G. Experimental and numerical investigation on the derailment of a railway wheelset with solid axle. Vehicle Syst Dyn. 2006;44:305–325. doi: 10.1080/00423110500337494
  • Polach O. Characteristic parameters of nonlinear wheel/rail contact geometry. Vehicle Syst Dyn. 2010;48:19–36. doi: 10.1080/00423111003668203
  • Antali M, Stepan G, Hogan SJ. Kinematic oscillations of railway wheelsets. Multibody Syst Dyn. 2015;34:259–274. doi: 10.1007/s11044-014-9424-9
  • TB/T 3188. Technical specification for railway car safety monitor and diagnosis system. China; 2007 (in Chinese).
  • Technische Universität Berlin. Available from: https://www.schienenfzg.tu-berlin.de/menue/forschung/telematik_wartung/.
  • Krause P, Hecht M. Energieautarke Sensorsysteme zur Zustandsüberwachung am Güterwagen. ZEVrail. 2017;141:116–124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.