Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 58, 2020 - Issue 9
240
Views
3
CrossRef citations to date
0
Altmetric
Articles

A robust real-time estimation of the dynamic normal reaction for an open-link locomotion module with an E-drive

ORCID Icon &
Pages 1451-1476 | Received 06 Jun 2018, Accepted 27 May 2019, Published online: 14 Jun 2019

References

  • Belousov B, Ksenevich TI, Vantsevich V. An active long-travel, two performance loop control suspension of an open-link locomotion module for off-road applications (SAE Technical Paper 2014-01-2288; 2014).
  • Andreev AF, Kabanau VI, Vantsevich VV. Driveline systems of ground vehicles: theory and design. Boca Raton (FL): Taylor & Francis Group/CRC Press; 2010.
  • Beloousov B, Ksenevich TI, Vantsevich VV. Load estimation of an open-link locomotion module for robotic and commercial multi-wheel applications. SAE Int J Commer Veh. 2013;6:301–307. doi: 10.4271/2013-01-2358
  • Belousov B, Ksenevich TI, Naumov S. Automated system to control steering and wheel springing parameters in vehicle locomotion module (SAE Technical Paper 2015-26-0085; 2015).
  • Vantsevich VV. Road and off-road vehicle system dynamics: Understanding the future from the past. Veh Syst Dyn. 2015;53:137–153. doi: 10.1080/00423114.2014.984726
  • Vantsevich VV. Vehicle systems: coupled and interactive dynamics analysis. Veh Syst Dyn. 2014;52:1489–1516. doi: 10.1080/00423114.2014.944869
  • Gray JP, Vantsevich VV, Paldan J. Agile tire slippage dynamics for radical enhancement of vehicle mobility. J Terramech. 2016;65:14–37. doi: 10.1016/j.jterra.2016.01.002
  • Hashemi E, Pirani M, Khajepour A, et al. Corner-based estimation of tire forces and vehicle velocities robust to road conditions. Control Eng Pract. 2017;61:28–40. doi: 10.1016/j.conengprac.2017.01.009
  • Benini C, Gadola M, Chindamo D, et al. The influence of suspension components friction on race car vertical dynamics. Veh Syst Dyn. 2017;55:338–350. doi: 10.1080/00423114.2016.1267370
  • Cho W, Yoon J, Yim S, et al. Estimation of tire forces for application to vehicle stability control. IEEE Trans Veh Technol. 2010;59:638–649. doi: 10.1109/TVT.2009.2034268
  • Jiang K, Victorino AC, Charara A. Adaptive estimation of vehicle dynamics through RLS and Kalman filter approaches. 2015 IEEE 18th International Conference on Intelligent Transportation Systems; 2015 Sept: 15–18; Las Palmas de Gran Canaria, Spain. p. 1741–1746.
  • Chen Z, Xie Z, Zhang J. Measurement of vehicle-bridge-interaction force using dynamic tire pressure monitoring. Mech Syst Signal Process. 2018;104:370–383. doi: 10.1016/j.ymssp.2017.11.001
  • Wilson GN, Ramirez-Serrano A, Sun Q. Geometric-based tyre vertical force estimation and stiffness parameterisation for automotive and unmanned vehicle applications. Veh Syst Dyn. 2017;55:168–190. doi: 10.1080/00423114.2016.1249378
  • Nam K, Fujimoto H, Hori Y. Advanced motion control of electric vehicles based on robust lateral tire force control via active front steering. IEEE/ASME Trans Mechatron. 2014;19:289–299. doi: 10.1109/TMECH.2012.2233210
  • Doumiati M, editor. Vehicle dynamics estimation using Kalman filtering: experimental validation. Hoboken (NJ): ISTE, Wiley; 2013.
  • Acosta M, Kanarachos S, Fitzpatrick ME. A virtual sensor for integral tire force estimation using tire model-less approaches and adaptive unscented Kalman filter. International Conference on Informatics in Control, Automation and Robotics (ICINCO); 2017 Jul 26–28; Madrid, Spain. p. 386–397.
  • Zhao W, Ji L, Wang C. H∞ control of anti-rollover strategy based on predictive vertical tire force. Trans Inst Meas Control 2017: 0142331217727581.
  • Hashemi E, Pirani M, Khajepour A, et al. Integrated estimation structure for the tire friction forces in ground vehicles. 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM); 2016 Jul 12–15; Banff, Alberta, Canada. p. 1657–1662.
  • Rezaeian A, Zarringhalam R, Fallah S, et al. Novel tire force estimation strategy for real-time implementation on vehicle applications. IEEE Trans Veh Technol. 2015;64:2231–2241. doi: 10.1109/TVT.2014.2345695
  • Imine H, Khemoudj O, Djemaï M, et al. Robust observer design of tire forces in heavy-duty vehicles. IEEE Trans Intell Transp Syst. 2015;16:3304–3312. doi: 10.1109/TITS.2015.2443180
  • Acosta M, Kanarachos S, Fitzpatrick ME. Accurate virtual sensing of vertical tire forces for enhanced handling dynamics. 43rd Annual Conference of the IEEE Industrial Electronics Society (IES); 2017 Oct 29–Nov 1; Beijing, China. p. 4009–4014.
  • Wilson GN, Ramirez-Serrano A, Sun Q. Tire force estimation of unmanned ground vehicles on off-road terrains for navigation decisions. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2017 Sept 24–28; Vancouver, BC, Canada. p. 6923–6928.
  • Alatorre VA, Victorino A, Charara A. Estimation of wheel-ground contact normal forces: experimental data validation. IFAC-PapersOnLine. 2017;50(1):14843–14848. doi: 10.1016/j.ifacol.2017.08.2584
  • Imine H, Madani T. Heavy vehicle suspension parameters identification and estimation of vertical forces: experimental results. Int J Control. 2015;88:324–334. doi: 10.1080/00207179.2014.951882
  • Imine H, Fridman L, Madani T. Identification of vehicle parameters and estimation of vertical forces. Int J Syst Sci. 2015;46:2996–3009. doi: 10.1080/00207721.2014.886741
  • Sename O, Do AL, Poussot-Vassal C, et al. Some LPV approaches for semi-active suspension control. 2012 American Control Conference (ACC 2012); 2012 Jun 27–29; Fairmont Queen Elizabeth, Montréal, Canada. p. 1567–1572.
  • Bai X-X, Chen P, Qian L-J. Principle and validation of modified hysteretic models for magnetorheological dampers. Smart Mater Struct. 2015;24:085014. doi: 10.1088/0964-1726/24/8/085014
  • Guo S, Yang S, Pan C. Dynamic modeling of magnetorheological damper behaviors. J Int Mater Syst Struct. 2006;17:3–14. doi: 10.1177/1045389X06055860
  • Wang DH, Liao WH. Magnetorheological fluid dampers: a review of parametric modelling. Smart Mater Struct. 2011;20:023001.
  • Chakravarthy VK. Sliding mode observers and unknown input estimations for nonlinear systems [dissertation]. Singapore: Nanyang Technological University; 2006.
  • Xiong Y, Saif M. Sliding mode observer for nonlinear uncertain systems. IEEE Trans Autom Control. 2001;46:2012–2017. doi: 10.1109/9.975511
  • Zhao LH, Liu ZY, Chen H. Sliding mode observer for vehicle velocity estimation with road grade and bank angles adaptation. 2009 IEEE Intelligent Vehicles Symposium; 2009 June 3–5; Xi'an, China. p. 701–706.
  • Gilbert GT. Positive definite matrices and Sylvester's criterion. Am Math Mon. 1991;98:44–46. doi: 10.1080/00029890.1991.11995702
  • Khalil HK. Nonlinear systems. Upper Saddle River (NJ): Prentice-Hall; 2002.
  • Seco F, Martín JM, Jiménez AR, et al. A high accuracy magnetostrictive linear position sensor. Sens Actuators A Phys. 2005;123:216–223. doi: 10.1016/j.sna.2005.02.026
  • Céspedes I, Huang Y, Ophir J, et al. Methods for estimation of subsample time delays of digitized echo signals. Ultrason Imaging. 1995;17:142–171. doi: 10.1177/016173469501700204
  • Vantsevich VV. Driveline system - suspension interaction in a 6×6 terrain truck. SAE Int J Commer Veh. 2012;5:462–469. doi: 10.4271/2012-01-1915
  • Vantsevich VV. Wheel dynamics fundamentals for agile tire slippage modeling and control. Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (DETC/CIE 2014); 2014 Aug 17–20; Buffalo (NY).
  • Gray JP, Vantsevich VV. Multi-vehicle convoy mobility in severe terrain conditions: factor impact analysis, estimation and control strategy. J Terramech. 2015;61:43–61. doi: 10.1016/j.jterra.2015.04.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.