186
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Chronic intermittent ethanol administration differentially alters DeltaFosB immunoreactivity in cortical-limbic structures of rats with high and low alcohol preference

, , , , &
Pages 264-275 | Received 28 May 2018, Accepted 10 Dec 2018, Published online: 08 Mar 2019

References

  • Rehm J, Baliunas D, Borges GL, Graham K, Irving H, Kehoe T, Parry CD, Patra J, Popova S, Poznyak V, et al. The relation between different dimensions of alcohol consumption and burden of disease – an overview. Addiction. 2010;105(5):817–43. doi:10.1111/j.1360-0443.2010.02899. Cited in PubMed; PMID:20331573.
  • Medina‐Mora ME, Monteiro M, Room R, Rehm J, Jernigan D, Sanchez‐Moreno D. Alcohol use and alcohol use disorders. In: Patel V, Chisholm D, Dua T, Laxminarayan R, Medina‐Mora ME, editors. Mental, neurological, and substance use disorders. Washington, DC: The World Bank; 2015. p. 127–44.
  • Sellman JD, Foulds JA, Adamson SJ, Todd FC, Deering DE. DSM-5 alcoholism: a 60-year perspective. Aust New Zeal J Psychiatry. 2014;48(6):507–11. doi:10.1177/0004867414532849. Cited in PubMed; PMID:24760358.
  • Gilpin NW, Koob GF. Neurobiology of alcohol dependence: focus on motivational mechanisms. Alcohol res heal. Nat Inst Alcohol Abuse Alcohol. 2008;31(3):185–95. Cited in PubMed; PMID:19881886.
  • Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. Nature Publishing Group. 2010; 26; 35(1):217–38. doi:10.1038/npp.2009.110. Cited in PubMed; PMID:19710631.
  • Wise RA, Koob GF. The development and maintenance of drug addiction. Neuropsychopharmacology. Nature Publishing Group. 2014;39(2):254–62. doi:10.1038/npp.2013.261. Cited in PubMed; PMID:24121188.
  • Heyne A, May T, Goll P, Wolffgramm J. Persisting consequences of drug intake: towards a memory of addiction. J Neural Transm. 2000;107(6):613–38. doi:10.1007/s007020070065. Cited in PubMed; PMID:10943904.
  • Hyman SE. Addiction: a disease of learning and memory. Am J Psychiatry. 2005;162(8):1414–22. doi:10.1176/appi.ajp.162.8.1414. Cited in PubMed; PMID:16055762.
  • Garbusow M, Sebold M, Beck A, Heinz A. Too difficult to stop: mechanisms facilitating relapse in alcohol dependence. Neuropsychobiology. 2014;70(2):103–10. doi:10.1159/000362838. Cited in PubMed; PMID:25359490.
  • Courtney KE, Ghahremani DG, Ray LA. The effect of alcohol priming on neural markers of alcohol cue-reactivity. Am J Drug Alcohol Abuse. 2015 30;41(4):300–08. doi:10.3109/00952990.2015.1044608. Cited in PubMed; PMID:26125586.
  • Goodman J, Packard MG. Memory systems and the addicted brain. Front Psychiatry. Frontiers Media S.A. 2016 25; 7:24. doi:10.3389/fpsyt.2016.00024. Cited in PubMed; PMID:26941660.
  • Loheswaran G, Barr MS, Rajji TK, Blumberger DM, Le Foll B, Daskalakis ZJ. Alcohol intoxication by binge drinking impairs neuroplasticity. Brain Stimul Basic, Transl Clin Res Neuromodulation. 2016;9(1):27–32. doi:10.1016/j.brs.2015.08.011. Cited in PubMed; PMID: 26433610.
  • Vicentini JE, Céspedes IC, Nascimento JO, Bittencourt JC, Viana MB. CRF type 1 receptors of the medial amygdala modulate inhibitory avoidance responses in the elevated T-maze. Horm Behav. 2014;65(3):195–202. doi:10.1016/j.yhbeh.2014.01.004. Cited in PubMed; PMID: 24472740.
  • Millan EZ, Marchant NJ, McNally GP. Extinction of drug seeking. Behav Brain Res. 2011;217(2):454–62. doi:10.1016/j.bbr.2010.10.037. Cited in PubMed; PMID: 21073904.
  • Engel JA, Jerlhag E. Chapter 9 – Alcohol: mechanisms along the mesolimbic dopamine system. In: Diana M, Di Chiara G, editors. Spano PBT-P in BR. Dopamine. Elsevier; 2014. 201–33p.
  • Heilig M, Egli M, Crabbe JC, Becker HC. Acute withdrawal, protracted abstinence and negative affect in alcoholism: are they linked? Addict Biol. 2010;15(2):169–84. doi:10.1111/j.1369-1600.2009.00194.x. Cited in PubMed; PMID: 20148778.
  • Koob GF, Buck CL, Cohen A, Edwards S, Park PE, Schlosburg JE, Schmeichel B, Vendruscolo LF, Wade CL, Whitfield TW Jr, et al. Addiction as a stress surfeit disorder. Neuropharmacology. 2014;76:370–82. doi:10.1016/j.neuropharm.2013.05.024. Cited in PubMed; PMID: 23747571.
  • Clarke RB, Söderpalm B, Lotfi A, Ericson M, Adermark L. Involvement of inhibitory receptors in modulating dopamine signaling and synaptic activity following acute ethanol exposure in striatal subregions. Alcohol Clin Exp Res. 2015; 8;39(12):2364–74. doi:10.1111/acer.12895. Cited in PubMed; PMID: 26614538.
  • Clarke R, Adermark L. Dopaminergic regulation of striatal interneurons in reward and addiction: focus on alcohol. Neural Plast. Hindawi Publishing Corporation. 2015;2015:814567. doi:10.1155/2015/814567. Cited in PubMed; PMID: 26246915.
  • Silberman Y, Winder DG. Ethanol and corticotropin releasing factor receptor modulation of central amygdala neurocircuitry: an update and future directions. Alcohol. 2015; 29;49(3):179–84. doi:10.1016/j.alcohol.2015.01.006. Cited in PubMed; PMID: 25716197.
  • Trantham-Davidson H, Chandler LJ. Alcohol-induced alterations in dopamine modulation of prefrontal activity. Alcohol. 2015; 23;49(8):773–79. doi:10.1016/j.alcohol.2015.09.001. Cited in PubMed; PMID: 26558348.
  • Volkow ND, Morales M. The brain on drugs: from reward to addiction. Cell. 2015;162(4):712–25. doi:10.1016/j.cell.2015.07.046. Cited in PubMed; PMID: 26276628.
  • Volkow ND, Koob GF, McLellan AT. Neurobiologic advances from the brain disease model of addiction. N Engl J Med. Massachusetts Medical Society. 2016;374(4):363–71. doi:10.1056/NEJMra1511480. Cited in PubMed; PMID: 26816013.
  • Souza-Formigoni ML, De Lucca EM, Hipolide DC, Enns SC, Oliveira MG, Nobrega JN. Sensitization to ethanol’s stimulant effect is associated with region-specific increases in brain D2 receptor binding. Psychopharmacology. 1999;146(3):262–67. doi:10.1007/s002130051115. Cited in PubMed; PMID: 10541725.
  • Abrahao KP, Quadros IMH, Souza-Formigoni MLO. Nucleus accumbens dopamine D1 receptors regulate the expression of ethanol-induced behavioural sensitization. Int J Neuropsychopharmacol. 2011;14(2):175–85. doi:10.1017/S1461145710000441. Cited in PubMed; PMID: 20426882.
  • Carnicella S, Ron D, Barak S. Intermittent ethanol access schedule in rats as a preclinical model of alcohol abuse. Alcohol. 2014;48(3):243–52. doi:10.1016/j.alcohol.2014.01.006. Cited in PubMed; PMID: 24721195.
  • Nestler EJ, Barrot M, Self DW. ΔFosB: A sustained molecular switch for addiction. Proc Natl Acad Sci USA. The National Academy of Sciences. 2001;98(20):11042–46. doi:10.1073/pnas.191352698. Cited in PubMed; PMID: 11572966.
  • Chen J, Kelz MB, Hope BT, Nakabeppu Y, Nestler EJ. Chronic Fos-related antigens: stable variants of ΔFosB induced in brain by chronic treatments. J Neurosci. 1997;17(13):4933LP–4941. doi:10.1523/JNEUROSCI.17-13-04933.1997. Cited in PubMed; PMID: 9185531.
  • Girotti M, Pace TWW, Gaylord RI, Rubin BA, Herman JP, Spencer RL. Habituation to repeated restraint stress is associated with lack of stress-induced c-fos expression in primary sensory processing areas of the rat brain. Neuroscience. 2006;138(4):1067–81. doi:10.1016/j.neuroscience.2005.12.002. Cited in PubMed; PMID: 16431027.
  • Melia KR, Ryabinin AE, Schroeder R, Bloom FE, Wilson MC. Induction and habituation of immediate early gene expression in rat brain by acute and repeated restraint stress. J Neurosci. 1994;14(10):5929LP–5938. doi:10.1523/JNEUROSCI.14-10-05929.1994. Cited in PubMed; PMID: 7931554.
  • Nestler EJ. ΔFosB: a transcriptional regulator of stress and antidepressant responses. Eur J Pharmacol. 2015;753:66–72. doi:10.1016/j.ejphar.2014.10.034. Cited in PubMed; PMID: 25446562.
  • Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci. 2011;12(11):623–37. doi:10.1038/nrn3111. Cited in PubMed; PMID: 21989194.
  • Ruffle JK. Molecular neurobiology of addiction: what’s all the (Delta)FosB about? Am J Drug Alcohol Abuse. 2014;40(6):428–37. doi:10.3109/00952990.2014.933840. Cited in PubMed; PMID: 25083822.
  • Ulery PG, Rudenko G, Nestler EJ. Regulation of DeltaFosB stability by phosphorylation. J Neurosci. 2006;26(19):5131–42. doi:10.1523/JNEUROSCI.4970-05.2006. Cited in PubMed; PMID: 16687504.
  • Council NR. Guide for the care and use of laboratory animals. Washington, DC: The National Academies Press; 1996.
  • Carnicella S, Amamoto R, Ron D. Excessive alcohol consumption is blocked by glial cell line-derived neurotrophic factor. Alcohol. 2009;43(1):35–43. doi:10.1016/j.alcohol.2008.12.001. Cited in PubMed; PMID: 19185208.
  • Hwa LS, Debold JF, Miczek KA. Alcohol in excess: CRF(1) receptors in the rat and mouse VTA and DRN. Psychopharmacology. 2013;225(2):313–27. doi:10.1007/s00213-012-2820-z. Cited in PubMed; PMID: 22885872.
  • Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 7th ed. New York: Acad. Press; 2007.
  • Hope BT, Kelz MB, Duman RS, Nestler EJ. Chronic electroconvulsive seizure (ECS) treatment results in expression of a long-lasting AP-1 complex in brain with altered composition and characteristics. J Neurosci. 1994;14(7):4318–28. Cited in PubMed; PMID: 8027782.
  • McClung CA, Ulery PG, Perrotti LI, Zachariou V, Berton O, Nestler EJ. DeltaFosB: a molecular switch for long-term adaptation in the brain. Brain Res Mol Brain Res. 2004;132(2):146–54. doi:10.1016/j.molbrainres.2004.05.014. Cited in PubMed; PMID: 15582154.
  • Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci. 2006;29:565–98. doi:10.1146/annurev.neuro.29.051605.113009. Cited in PubMed; PMID: 16776597.
  • Perrotti LI, Weaver RR, Robison B, Renthal W, Maze I, Yazdani S, Elmore RG, Knapp DJ, Selley DE, Martin BR, et al. Distinct patterns of deltaFosB induction in brain by drugs of abuse. Synapse. 2008;62(5):358–69. doi:10.1002/syn.20500. Cited in PubMed; PMID: 18293355.
  • Hsu SM, Raine L. Protein A, avidin, and biotin in immunohistochemistry. J Histochem Cytochem. 1981;29(11):1349–53. doi:10.1177/29.11.6172466. Cited in PubMed; PMID: 6172466.
  • Crabbe JC. Rodent models of genetic contributions to motivation to abuse alcohol. Nebr Symp Motiv. 2014;61:5–29. Cited in PubMed; PMID: 25306777.
  • Spanagel R. Animal models of addiction. Dialogues Clin Neurosci. 2017;19(3):247–58. Cited in PubMed; PMID: 29302222.
  • Wscieklica T, de Barros Viana M, Le Sueur Maluf L, Pouza KCP, Spadari RC, Cespedes IC. Alcohol consumption increases locomotion in an open field and induces Fos-immunoreactivity in reward and approach/withdrawal-related neurocircuitries. Alcohol. 2016;50:73–82. doi:10.1016/j.alcohol.2015.11.005. Cited in PubMed; PMID: 25306777.
  • Becker HC, Lopez MF, Doremus-Fitzwater TL. Effects of stress on alcohol drinking: a review of animal studies. Psychopharmacology. 2011;218(1):131–56. doi:10.1007/s00213-011-2443-9. Cited in PubMed; PMID: 21850445.
  • Simms JA, Steensland P, Medina B, Abernathy KE, Chandler LJ, Wise R, Bartlett SE. Intermittent access to 20% ethanol induces high ethanol consumption in long-evans and wistar rats. Alcohol Clin Exp Res. 2008;32(10):1816–23. doi:10.1111/j.1530-0277.2008.00753.x. Cited in PubMed; PMID: 18671810.
  • Simms JA, Bito-Onon JJ, Chatterjee S, Bartlett SE. Long-Evans rats acquire operant self-administration of 20% ethanol without sucrose fading. Neuropsychopharmacology. 2010;35(7):1453–63. doi:10.1038/npp.2010.15. Cited in PubMed; PMID: 20200505.
  • Morales M, McGinnis MM, McCool BA. Chronic ethanol exposure increases voluntary home cage intake in adult male, but not female, long-evans rats. Pharmacol Biochem Behav. 2015;139(PtA):67–76. doi:10.1016/j.pbb.2015.10.016. Cited in PubMed; PMID: 26515190.
  • Godfrey J, Jeanguenin L, Castro N, Olney JJ, Dudley J, Pipkin J, Walls SM, Wang W, Herr DR, Harris GL, et al. Chronic voluntary ethanol consumption induces favorable ceramide profiles in selectively bred alcohol-preferring (P) rats. PLoS One. 2015;10(9):e0139012. doi:10.1371/journal.pone.0139012. Cited in PubMed; PMID: 26405804.
  • Ozburn AR, Mayfield RD, Ponomarev I, Jones TA, Blednov YA, Harris RA. Chronic self-administration of alcohol results in elevated ΔFosB: comparison of hybrid mice with distinct drinking patterns. BMC Neurosci. 2012;13(1):1. doi:10.1186/1471-2202-13-130. Cited in PubMed; PMID: 23102405.
  • Wille-Bille A, De Olmos S, Marengo L, Chiner F, Pautassi RM. Long-term ethanol self-administration induces Δ FosB in male and female adolescent, but not in adult, wistar rats. Prog Neuropsychopharmacol Biol Psychiatry. 2017;74:15–30. doi:10.1016/j.pnpbp.2016.11.008. Cited in PubMed; PMID: 27919738.
  • McBride WJ. Central nucleus of the amygdala and the effects of alcohol and alcohol-drinking behavior in rodents. Pharmacol Biochem Behav. 2002;71(3):509–15. doi:10.1016/S0091-3057(01)00680-3. Cited in PubMed; PMID: 11830185.
  • Gilpin NW, Herman MA, Roberto M. The central amygdala as an integrative hub for anxiety and alcohol use disorders. Biol Psychiatry. 2015;77(10):859–69. doi:10.1016/j.biopsych.2014.09.008. Cited in PubMed; PMID: 25433901.
  • Retson TA, Hoek JB, Sterling RC, Van Bockstaele EJ. Amygdalar neuronal plasticity and the interactions of alcohol, sex, and stress. Brain Struct Funct. 2015;220(6):3211–32. doi:10.1007/s00429-014-0851-4. Cited in PubMed; PMID: 25081549.
  • Keshavarzi S, Sullivan RKP, Ianno DJ, Sah P. Functional properties and projections of neurons in the medial amygdala. J Neurosci. 2014;34(26):8699–715. doi:10.1523/JNEUROSCI.1176-14.2014. Cited in PubMed; PMID: 24966371.
  • Barak S, Liu F, Ben Hamida S, Yowell QV, Neasta J, Kharazia V, Janak PH, Ron D. Disruption of alcohol-related memories by mTORC1 inhibition prevents relapse. Nat Neurosci. 2013;16(8):1111–17. doi:10.1038/nn.3439. Cited in PubMed; PMID: 23792945.
  • McGregor IS, Hargreaves GA, Apfelbach R, Hunt GE. Neural correlates of cat odor-induced anxiety in rats: region-specific effects of the benzodiazepine midazolam. J Neurosci. 2004;24(17):4134–44. doi:10.1523/JNEUROSCI.0187-04.2004. Cited in PubMed; PMID: 15115808.
  • Brennan PA, Zufall F. Pheromonal communication in vertebrates. Nature. 2006;444(7117):308–15. doi:10.1038/nature05404. Cited in PubMed; PMID: 17108955.
  • LeDoux J. Rethinking the emotional brain. Neuron. 2012;73(4):653–76. doi:10.1016/j.neuron.2012.02.004. Cited in PubMed; PMID: 22365542.
  • Ma S, Morilak DA. Induction of FOS expression by acute immobilization stress is reduced in locus coeruleus and medial amygdala of Wistar-Kyoto rats compared to Sprague-Dawley rats. Neuroscience. 2004;124(4):963–72. doi:10.1016/j.neuroscience.2003.12.028. Cited in PubMed; PMID: 15026136.
  • Nikulina EM, Covington HE 3rd, Ganschow L, Hammer RPJ, Miczek KA. Long-term behavioral and neuronal cross-sensitization to amphetamine induced by repeated brief social defeat stress: fos in the ventral tegmental area and amygdala. Neuroscience. 2004;123(4):857–65. doi:10.1016/j.neuroscience.2003.10.029. Cited in PubMed; PMID: 14751279.
  • Windle RJ, Kershaw YM, Shanks N, Wood SA, Lightman SL, Ingram CD. Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo-pituitary-adrenal activity. J Neurosci. 2004;24(12):2974–82. doi:10.1523/JNEUROSCI.3432-03.2004. Cited in PubMed; PMID: 15044536.
  • de Andrade JS, Abrão RO, Céspedes IC, Garcia MC, Nascimento JO, Spadari-Bratfisch RC, Melo LL, Da Silva RC, Viana MB. Acute restraint differently alters defensive responses and fos immunoreactivity in the rat brain. Behav Brain Res. 2012;232(1):20–29. doi:10.1016/j.bbr.2012.03.034. Cited in PubMed; PMID: 22487246.
  • Nikulina EM, Lacagnina MJ, Fanous S, Wang J, Hammer RPJ. Intermittent social defeat stress enhances mesocorticolimbic DeltaFosB/BDNF co-expression and persistently activates corticotegmental neurons: implication for vulnerability to psychostimulants. Neuroscience. 2012;212:38–48. doi:10.1016/j.neuroscience.2012.04.012. Cited in PubMed; PMID: 22521816.
  • Butler TR, Ariwodola OJ, Weiner JL. The impact of social isolation on HPA axis function, anxiety-like behaviors, and ethanol drinking. Front Integr Neurosci. 2014;7:102. doi:10.3389/fnint.2013.00102. Cited in PubMed; PMID: 24427122.
  • Sharko AC, Kaigler KF, Fadel JR, Wilson MA. Individual differences in voluntary ethanol consumption lead to differential activation of the central amygdala in rats: relationship to the anxiolytic and stimulant effects of low dose ethanol. Alcohol Clin Exp Res. 2013;37(Suppl1):E172–80. doi:10.1111/j.1530-0277.2012.01907.x. Cited in PubMed; PMID: 22834974.
  • Kirk RA, Redmon SN, Kesner RP. The ventral dentate gyrus mediates pattern separation for reward value. Behav Neurosci. 2017;131(1):42–45. doi:10.1037/bne0000172. Cited in PubMed; PMID: 28004952.
  • Yassa MA, Stark CEL. Pattern separation in the hippocampus. Trends Neurosci. 2011;34(10):515–25. doi:10.1016/j.tins.2011.06.006. Cited in PubMed; PMID: 21788086.
  • Okuno H. Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neurosci Res. 2011;69(3):175–86. doi:10.1016/j.neures.2010.12.007. Cited in PubMed; PMID: 21163309.
  • Eagle AL, Gajewski PA, Yang M, Kechner ME, Al Masraf BS, Kennedy PJ, Wang H, et al. Experience-dependent induction of hippocampal deltaFosB controls learning. J Neurosci. 2015;35(40):13773–83. doi:10.1523/JNEUROSCI.2083-15.2015. Cited in PubMed; PMID: 26446228.
  • Abraham WC. Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci. 2008;9(5):387. doi:10.1038/nrn2356. Cited in PubMed; PMID: 18401345.
  • Neves G, Cooke SF, Bliss TVP. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci. 2008;9(1):65–75. doi:10.1038/nrn2303. Cited in PubMed; PMID: 18094707.
  • Crombag HS, Bossert JM, Koya E, Shaham Y. Review. Context-induced relapse to drug seeking: a review. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3233–43. doi:10.1098/rstb.2008.0090. Cited in PubMed; PMID: 18640922.
  • Lasseter HC, Xie X, Ramirez DR, Fuchs RA. Sub-region specific contribution of the ventral hippocampus to drug context-induced reinstatement of cocaine-seeking behavior in rats. Neuroscience. 2010;171(3):830–39. doi:10.1016/j.neuroscience.2010.09.032. Cited in PubMed; PMID: 20870011.
  • Sapolsky RM. Depression, antidepressants, and the shrinking hippocampus. Proc Natl Acad Sci USA. 2001;98(22):12320–22. doi:10.1073/pnas.231475998. Cited in PubMed; PMID: 11675480.
  • Campbell S, Macqueen G. The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci. 2004;29(6):417–26. Cited in PubMed; PMID: 15644983.
  • Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35(1):169–91. doi:10.1038/npp.2009.83. Cited in PubMed; PMID: 19625997.
  • Pitchers KK, Vialou V, Nestler EJ, Laviolette SR, Lehman MN, Coolen LM. Natural and drug rewards act on common neural plasticity mechanisms with DeltaFosB as a key mediator. J Neurosci. 2013;33(8):3434–42. doi:10.1523/JNEUROSCI.4881-12.2013. Cited in PubMed; PMID: 23426671.
  • Peters J, Kalivas PW, Quirk GJ. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem. 2009;16(5):279–88. doi:10.1101/lm.1041309. Cited in PubMed; PMID: 19380710.
  • Peters J, Pattij T, De Vries TJ. Targeting cocaine versus heroin memories: divergent roles within ventromedial prefrontal cortex. Trends Pharmacol Sci England. 2013;34(12):689–95. doi:10.1016/j.tips.2013.10.004. Cited in PubMed; PMID: 24182624.
  • Moorman DE, James MH, McGlinchey EM, Aston-Jones G. Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res. 2015;1628(PtA):130–46. doi:10.1016/j.brainres.2014.12.024. Cited in PubMed; PMID: 25529632.
  • Pfarr S, Meinhardt MW, Klee ML, Hansson AC, Vengeliene V, Schönig K, Bartsch D, Hope BT, Spanagel R, Sommer WH. Losing control: excessive alcohol seeking after selective inactivation of cue-responsive neurons in the infralimbic cortex. J Neurosci. 2015;35(30):10750–61. doi:10.1523/JNEUROSCI.0684-15.2015. Cited in PubMed; PMID: 26224858.
  • Gourley SL, Taylor JR. Going and stopping: dichotomies in behavioral control by the prefrontal cortex. Nat Neurosci. 2016;19(6):656–64. doi:10.1038/nn.4275. Cited in PubMed; PMID: 29162973.
  • Pennington ZT, Anderson AS, Fanselow MS. The ventromedial prefrontal cortex in a model of traumatic stress: fear inhibition or contextual processing? Learn Mem. 2017;24(9):400–06. doi:10.1101/lm.046110.117. Cited in PubMed; PMID: 28814465.
  • Wang F, Xu H, Zhao H, Gelernter J, Zhang H. DNA co-methylation modules in postmortem prefrontal cortex tissues of European Australians with alcohol use disorders. Sci Rep. 2016;6:19430. doi:10.1038/srep19430. Cited in PubMed; PMID: 26763658.
  • Heilig M, Barbier E, Johnstone AL, Tapocik J, Meinhardt MW, Pfarr S, Wahlestedt C, Sommer WH. Reprogramming of mPFC transcriptome and function in alcohol dependence. Genes Brain Behav. 2017;16(1):86–100. doi:10.1111/gbb.12344. Cited in PubMed; PMID: 27657733.
  • Wolstenholme JT, Mahmood T, Harris GM, Abbas S, Miles MF. Intermittent ethanol during adolescence leads to lasting behavioral changes in adulthood and alters gene expression and histone methylation in the PFC. Front Mol Neurosci. 2017;10:307. doi:10.3389/fnmol.2017.00307. Cited in PubMed; PMID: 29018328.
  • Nestler EJ. Review. Transcriptional mechanisms of addiction: role of DeltaFosB. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3245–55. doi:10.1098/rstb.2008.0067. Cited in PubMed; PMID: 18640924.
  • Li J, Cheng Y, Bian W, Liu X, Zhang C, Ye J-H. Region-specific induction of FosB/DeltaFosB by voluntary alcohol intake: effects of naltrexone. Alcohol Clin Exp Res. 2010;34(10):1742–50. doi:10.1111/j.1530-0277.2010.01261.x. Cited in PubMed; PMID: 20626732.
  • Rushworth MFS, Walton ME, Kennerley SW, Bannerman DM. Action sets and decisions in the medial frontal cortex. Trends Cogn Sci. 2004;8(9):410–17. doi:10.1016/j.tics.2004.07.009. Cited in PubMed; PMID: 15350242.
  • Totah NKB, Kim YB, Homayoun H, Moghaddam B. Anterior cingulate neurons represent errors and preparatory attention within the same behavioral sequence. J Neurosci. 2009;29(20):6418–26. doi:10.1523/JNEUROSCI.1142-09.2009. Cited in PubMed; PMID: 19458213.
  • Bale TL, Epperson N. Sex as a biological variable: who, what, when, why, and how. Neuropsychopharmacology. 2017;42:386–96. doi:10.1038/npp.2016.215. Cited in PubMed; PMID: 27658485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.