0
Views
0
CrossRef citations to date
0
Altmetric
Review

New therapeutics for the prevention or amelioration of fetal alcohol spectrum disorders: a narrative review of the preclinical literature

, , , &
Received 05 Dec 2023, Accepted 26 May 2024, Published online: 18 Jul 2024

References

  • Pilatti A, Read JP, Pautassi RM. ELSA 2016 cohort: alcohol, tobacco, and marijuana use and their association with age of drug use onset. Risk Perception, And Social Norms In Argentinean College Freshmen. Frontiers. 2017;8. doi: 10.3389/fpsyg.2017.01452.
  • Vera BDV, Pilatti A, Pautassi RM. ELSA 2014 cohort: risk factors associated with heavy episodic drinking trajectories in argentinean college students. Front Behav Neurosci. 2020;14:105. doi: 10.3389/fnbeh.2020.00105.
  • Husky MM, Bharat C, Lépine JP, Kovess-Masfety V. Cohort alcohol use in France and the transition from use to alcohol use disorder and remission. J Psychoactive Drugs. 2019;51:453–62. doi: 10.1080/02791072.2019.1612536.
  • Vera BDV, Pilatti A, Pautassi RM. ELSA cohort 2014: association of age of first drink and progression from first drink to drunkenness on alcohol outcomes in argentinean college freshmen. Am J Drug Alcohol Abuse. 2020;46:58–67. doi: 10.1080/00952990.2019.1608223.
  • Moraes Castro M, Pinto F, Pereiras C, Fischer Castells A, Vogel Agoglia C, Duarte V, Barceló J, Sosa C, González G. Autodeclaración del consumo de marihuana, tabaco, alcohol y derivados de cocaína en embarazadas en 2013 y 2016, Montevideo, Uruguay. Adicciones. 2019;32:173. doi: 10.20882/adicciones.1107.
  • Lees B, Mewton L, Jacobus J, Valadez EA, Stapinski LA, Teesson M, Tapert SF, Squeglia LM. Association of prenatal alcohol exposure with psychological, behavioral, and neurodevelopmental outcomes in children from the adolescent brain cognitive development study. Am J Psychiatry. 2020;177:1060–72. doi: 10.1176/appi.ajp.2020.20010086.
  • Popova S, Charness ME, Burd L, Crawford A, Hoyme HE, Mukherjee RAS, Riley EP, Elliott EJ. Fetal alcohol spectrum disorders. Nature reviews. Disease Primers. 2023;9:11. doi: 10.1038/s41572-023-00420-x.
  • Okurame JC, Cannon L, Carter E, Thomas S, Elliott EJ, Rice LJ. Fetal alcohol spectrum disorder resources for health professionals: a scoping review protocol. BMJ Open. 2022;12:e065327. doi: 10.1136/bmjopen-2022-065327.
  • Chokroborty-Hoque A, Alberry B, Singh SM. Exploring the complexity of intellectual disability in fetal alcohol spectrum disorders. Front Pediatr. 2014;2:90. doi: 10.3389/fped.2014.00090.
  • Pueta M, Rovasio RA, Abate P, Spear NE, Molina JC. Prenatal and postnatal ethanol experiences modulate consumption of the drug in rat pups, without impairment in the granular cell layer of the main olfactory bulb. Physiol Behav. 2011;102:63–75. doi: 10.1016/j.physbeh.2010.10.009.
  • Contreras ML, de la Fuente-Ortega E, Vargas-Roberts S, Muñoz DC, Goic CA, Haeger PA. NADPH oxidase isoform 2 (NOX2) is involved in drug addiction vulnerability in progeny developmentally exposed to ethanol. Front Neurosci. 2017;11:338. doi: 10.3389/fnins.2017.00338.
  • Wille-Bille A, Bellia F, Jimenez Garcia AM, Miranda-Morales RS, D’Addario C, Pautassi RM. Early exposure to environmental enrichment modulates the effects of prenatal ethanol exposure upon opioid gene expression and adolescent ethanol intake. Neuropharmacology. 2020;165:107917. doi: 10.1016/j.neuropharm.2019.107917.
  • Plaza-Briceño W, Estay SF, de la Fuente-Ortega E, Gutiérrez C, Sánchez G, Hidalgo C, Chávez AE, Haeger PA. N-Methyl-d-aspartate receptor modulation by nicotinamide adenine dinucleotide phosphate oxidase type 2 drives synaptic plasticity and spatial memory impairments in rats exposed pre- and postnatally to ethanol. Antioxid Redox Signal. 2020;32:602–17. doi: 10.1089/ars.2019.7787.
  • Fabio MC, March SM, Molina JC, Nizhnikov ME, Spear NE, Pautassi RM. Prenatal ethanol exposure increases ethanol intake and reduces c-fos expression in infralimbic cortex of adolescent rats. Pharmacol Biochem Behav. 2013;103:842–52. doi: 10.1016/j.pbb.2012.12.009.
  • Fabio MC, Vivas LM, Pautassi RM. Prenatal ethanol exposure alters ethanol-induced fos immunoreactivity and dopaminergic activity in the mesocorticolimbic pathway of the adolescent brain. Neuroscience. 2015;301:221–34. doi: 10.1016/j.neuroscience.2015.06.003.
  • Walter KR, Ricketts DK, Presswood BH, Smith SM, Mooney SM. Prenatal alcohol exposure causes persistent microglial activation and age- and sex- specific effects on cognition and metabolic outcomes in an Alzheimer’s disease mouse model. Am J Drug Alcohol Abuse. 2023;49:302–20. doi: 10.1080/00952990.2022.2119571.
  • Webster WS, Walsh DA, McEwen SE, Lipson AH. Some teratogenic properties of ethanol and acetaldehyde in C57BL/6J mice: implications for the study of the fetal alcohol syndrome. Teratology. 1983;27:231–43. doi: 10.1002/tera.1420270211.
  • Risbud RD, Breit KR, Thomas JD. Early developmental alcohol exposure alters behavioral outcomes following adolescent re-exposure in a rat model. Alcohol Clin Exp Res. 2022;46:1993–2009. doi: 10.1111/acer.14950.
  • Gursky ZH, Klintsova AY. Rat model of late gestational alcohol exposure produces similar life-long changes in thalamic nucleus reuniens following moderate- versus high-dose insult. Alcohol and alcoholism (Oxford, Oxfordshire. Alcohol Alcoholism. 2022;57:413–20. doi: 10.1093/alcalc/agac008.
  • Schambra UB, Nunley K, Harrison TA, Lewis CN. Consequences of low or moderate prenatal ethanol exposures during gastrulation or neurulation for open field activity and emotionality in mice. Neurotoxicol Teratol. 2016;57:39–53. doi: 10.1016/j.ntt.2016.06.003.
  • Subbanna S, Basavarajappa BS. Binge-like prenatal ethanol exposure causes impaired cellular differentiation in the embryonic forebrain and synaptic and behavioral defects in adult mice. Brain Sci. 2022;12:793. doi: 10.3390/brainsci12060793.
  • Rouzer SK, Cole JM, Johnson JM, Varlinskaya EI, Diaz MR. Moderate maternal alcohol exposure on gestational day 12 impacts anxiety-like behavior in offspring. Front Behav Neurosci. 2017;11:183. doi: 10.3389/fnbeh.2017.00183.
  • Bird CW, Barber MJ, Martin J, Mayfield JJ, Valenzuela CF. The mouse-equivalent of the human BDNF VAL66MET polymorphism increases dorsal hippocampal volume and does not interact with developmental ethanol exposure. Alcohol. 2020;86:17–24. doi: 10.1016/j.alcohol.2020.03.005.
  • Bariselli S, Mateo Y, Reuveni N, Lovinger DM. Gestational ethanol exposure impairs motor skills in female mice through dysregulated striatal dopamine and acetylcholine function. Neuropsychopharmacol. 2023;48:1808–20. doi: 10.1038/s41386-023-01594-4.
  • Gilpin NW, Richardson HN, Cole M, Koob GF. Vapor inhalation of alcohol in rats. Current Protocols In Neuroscience. 2008;44. doi: 10.1002/0471142301.ns0929s44.
  • Murawski NJ, Moore EM, Thomas JD, Riley EP. Advances in diagnosis and treatment of fetal alcohol spectrum disorders: from animal models to human studies. Alcohol Res. 2015;37:97–108.
  • O’Connor MJ, Frankel F, Paley B, Schonfeld AM, Carpenter E, Laugeson EA, Marquardt R. A controlled social skills training for children with fetal alcohol spectrum disorders. J Consult Clin Psychol. 2006;74:639–48. doi: 10.1037/0022-006X.74.4.639.
  • Wells AM, Chasnoff IJ, Schmidt CA, Telford E, Schwartz LD. Neurocognitive habilitation therapy for children with fetal alcohol spectrum disorders: an adaptation of the alert program(R). Am J Occup Ther. 2012;66:24–34. doi: 10.5014/ajot.2012.002691.
  • Thomas JD, Fleming S, Riley EP. MK-801 can exacerbate or attenuate behavioral alterations associated with neonatal alcohol exposure in the rat, depending on the timing of administration. Alcohol Clin Exp Res. 2001;25:764–73. doi: 10.1111/j.1530-0277.2001.tb02277.x.
  • Kusat Ol K, Kanbak G, Oğlakcı Ilhan A, Burukoglu D, Yücel F. The investigation of the prenatal and postnatal alcohol exposure-induced neurodegeneration in rat brain: protection by betaine and/or omega-3. Childs Nerv Syst. 2016;32:467–74. doi: 10.1007/s00381-015-2990-1.
  • Sogut I, Uysal O, Oglakci A, Yucel F, Kartkaya K, Kanbak G. Prenatal alcohol-induced neuroapoptosis in rat brain cerebral cortex: protective effect of folic acid and betaine. Childs Nerv Syst. 2017;33:407–17. doi: 10.1007/s00381-016-3309-6.
  • Marengo L, Fabio MC, Bernal IS, Salguero A, Molina JC, Moron I, Cendan CM, D’Addario C, Pautassi RM. Folate administration ameliorates neurobehavioral effects of prenatal ethanol exposure. Am J Drug Alcohol Abuse. 2023;49:1–13. doi: 10.1080/00952990.2022.2159425.
  • Kwan STC, Ricketts DK, Presswood BH, Smith SM, Mooney SM. Prenatal choline supplementation during mouse pregnancy has differential effects in alcohol-exposed fetal organs. Alcohol Clin Exp Res. 2021;45:2471–84. doi: 10.1111/acer.14730.
  • Wang Y, Feltham BA, Louis XL, Eskin MNA, Suh M. Maternal diets affected ceramides and fatty acids in brain regions of neonatal rats with prenatal ethanol exposure. Nutr Neurosci. 2023;26:60–71. doi: 10.1080/1028415X.2021.2017661.
  • Hu Y-S, Long N, Pigino G, Brady ST, Lazarov O, Ginsberg SD. Molecular mechanisms of environmental enrichment: impairments in Akt/GSK3β, neurotrophin-3 and CREB signaling. PLOS ONE. 2013;8:e64460. doi: 10.1371/journal.pone.0064460.
  • Helfrich KK, Saini N, Kwan STC, Rivera OC, Hodges R, Smith SM. Gestational iron supplementation improves fetal outcomes in a rat model of prenatal alcohol exposure. Nutrients. 2022;14:1653. doi: 10.3390/nu14081653.
  • Shili I, Hamdi Y, Marouani A, Ben Lasfar Z, Ghrairi T, Lefranc B, Leprince J, Vaudry D, Olfa MK. Long-term protective effect of PACAP in a fetal alcohol syndrome (FAS) model. Peptides. 2021;146:170630. doi: 10.1016/j.peptides.2021.170630.
  • Komada M, Hara N, Kawachi S, Kawachi K, Kagawa N, Nagao T, Ikeda Y. Mechanisms underlying neuro-inflammation and neurodevelopmental toxicity in the mouse neocortex following prenatal exposure to ethanol. Sci Rep. 2017;7:4934. doi: 10.1038/s41598-017-04289-1.
  • Almeida-Toledano L, Andreu-Fernández V, Aras-López R, García-Algar Ó, Martínez L, Gómez-Roig MD. Epigallocatechin gallate ameliorates the effects of prenatal alcohol exposure in a fetal alcohol spectrum disorder-like mouse Model. Int J Mol Sci. 2021;22:715. doi: 10.3390/ijms22020715.
  • Ieraci A, Herrera DG. Nicotinamide inhibits ethanol-induced caspase-3 and PARP-1 over-activation and subsequent neurodegeneration in the developing mouse cerebellum. Cerebellum. 2018;17:326–35. doi: 10.1007/s12311-017-0916-z.
  • Thomas JD, La Fiette MH, Quinn VRE, Riley EP. Neonatal choline supplementation ameliorates the effects of prenatal alcohol exposure on a discrimination learning task in rats. Neurotoxicol Teratol. 2000;22:703–11. doi: 10.1016/S0892-0362(00)00097-0.
  • Thomas JD, Garrison M, O’Neill TM. Perinatal choline supplementation attenuates behavioral alterations associated with neonatal alcohol exposure in rats. Neurotoxicol Teratol. 2004;26:35–45. doi: 10.1016/j.ntt.2003.10.002.
  • Thomas JD, O’Neill TM, Dominguez HD. Perinatal choline supplementation does not mitigate motor coordination deficits associated with neonatal alcohol exposure in rats. Neurotoxicol Teratol. 2004;26:223–29. doi: 10.1016/j.ntt.2003.10.005.
  • Wellmann KA, George F, Brnouti F, Mooney SM. Docosahexaenoic acid partially ameliorates deficits in social behavior and ultrasonic vocalizations caused by prenatal ethanol exposure. Behav Brain Res. 2015;286:201–11. doi: 10.1016/j.bbr.2015.02.048.
  • Balaszczuk V, Salguero JA, Villarreal RN, Scaramuzza RG, Mendez S, Abate P. Hyperlocomotion and anxiety- like behavior induced by binge ethanol exposure in rat neonates. Possible ameliorative effects of Omega 3. Behav Brain Res. 2019;372:112022. doi: 10.1016/j.bbr.2019.112022.
  • Patten AR, Sickmann HM, Dyer RA, Innis SM, Christie BR. Omega-3 fatty acids can reverse the long-term deficits in hippocampal synaptic plasticity caused by prenatal ethanol exposure. Neurosci Lett. 2013;551:7–11. doi: 10.1016/j.neulet.2013.05.051.
  • Marengo L, Barey A, Salguero A, Fabio MC, Cendán CM, Morón-Henche I, D’Addario C, Pautassi RM. Neurobehavioral alterations induced by third-trimester gestation-equivalent ethanol exposure are inhibited by folate administration. Dev Psychobiol. 2023;65:e22426. doi: 10.1002/dev.22426.
  • Aghaie CI, Hausknecht KA, Wang R, Dezfuli PH, Haj-Dahmane S, Kane CJM, Sigurdson WJ, Shen RY. Prenatal ethanol exposure and postnatal environmental intervention alter dopaminergic neuron and microglia morphology in the ventral tegmental area during adulthood. Alcohol Clin Exp Res. 2020;44:435–44. doi: 10.1111/acer.14275.
  • Wang R, Hausknecht KA, Shen YL, Haj-Dahmane S, Vezina P, Shen RY. Environmental enrichment reverses increased addiction risk caused by prenatal ethanol exposure. Drug Alcohol Depen. 2018;191:343–47. doi: 10.1016/j.drugalcdep.2018.07.013.
  • Wang R, Martin CD, Lei AL, Hausknecht KA, Turk M, Micov V, Kwarteng F, Ishiwari K, Oubraim S, Wang AL, et al. Prenatal ethanol exposure impairs sensory processing and habituation to visual stimuli, effects normalized by enrichment of postnatal environmental. Alcohol Clin Exp Res. 2022;46:891–906. doi: 10.1111/acer.14818.
  • Thomas JD, Biane JS, O’Bryan KA, O’Neill TM, Dominguez HD. Choline supplementation following third-trimester-equivalent alcohol exposure attenuates behavioral alterations in rats. Behavioral Neuroscience. 2007;121:120–30. doi: 10.1037/0735-7044.121.1.120.
  • Waddell J, Mooney SM. Choline and working memory training improve cognitive deficits caused by prenatal exposure to ethanol. Nutrients. 2017;9:1080. doi: 10.3390/nu9101080.
  • Waddell J, Hill E, Tang S, Jiang L, Xu S, Mooney SM. Choline plus working memory training improves prenatal alcohol-induced deficits in cognitive flexibility and functional connectivity in adulthood in rats. Nutrients. 2020;12:3513. doi: 10.3390/nu12113513.
  • Zhang K, Wang H, Xu M, Frank JA, Luo J. Role of MCP-1 and CCR2 in ethanol-induced neuroinflammation and neurodegeneration in the developing brain. J Neuroinflammation. 2018;15:197. doi: 10.1186/s12974-018-1241-2.
  • Kane CJ, Phelan KD, Han L, Smith RR, Xie J, Douglas JC, Drew PD. Protection of neurons and microglia against ethanol in a mouse model of fetal alcohol spectrum disorders by peroxisome proliferator-activated receptor-γ agonists. Brain Behav Immun. 2011;25:S137–145. doi: 10.1016/j.bbi.2011.02.016.
  • Drew PD, Johnson JW, Douglas JC, Phelan KD, Kane CJ. Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2015;39:445–54. doi: 10.1111/acer.12639.
  • Chastain LG, Franklin T, Gangisetty O, Cabrera MA, Mukherjee S, Shrivastava P, Jabbar S, Sarkar DK. Early life alcohol exposure primes hypothalamic microglia to later-life hypersensitivity to immune stress: possible epigenetic mechanism. Neuropsychopharmacology. 2019;44:1579–88. doi: 10.1038/s41386-019-0326-7.
  • Shrivastava P, Cabrera MA, Chastain LG, Boyadjieva NI, Jabbar S, Franklin T, Sarkar DK. Mu-opioid receptor and delta-opioid receptor differentially regulate microglial inflammatory response to control proopiomelanocortin neuronal apoptosis in the hypothalamus: effects of neonatal alcohol. J Neuroinflammation. 2017;14:83. doi: 10.1186/s12974-017-0844-3.
  • Wang X, Zhang K, Yang F, Ren Z, Xu M, Frank JA, Ke ZJ, Luo J. Minocycline protects developing brain against ethanol-induced damage. Neuropharmacology. 2018;129:84–99. doi: 10.1016/j.neuropharm.2017.11.019.
  • Ren Z, Wang X, Xu M, Frank JA, Luo J. Minocycline attenuates ethanol-induced cell death and microglial activation in the developing spinal cord. Alcohol. 2019;79:25–35. doi: 10.1016/j.alcohol.2018.12.002.
  • Ryan SH, Williams JK, Thomas JD. Choline supplementation attenuates learning deficits associated with neonatal alcohol exposure in the rat: effects of varying the timing of choline administration. Brain Res. 2008;1237:91–100. doi: 10.1016/j.brainres.2008.08.048.
  • Andreu-Fernández V, Serra-Delgado M, Almeida-Toledano L, García-Meseguer À, Vieiros M, Ramos-Triguero A, Muñoz-Lozano C, Navarro-Tapia E, Martínez L, García-Algar Ó, et al. Effect of postnatal epigallocatechin-gallate treatment on cardiac function in mice prenatally exposed to alcohol. Antioxidants (Basel, Switzerland). 2023;12:1067. doi: 10.3390/antiox12051067.
  • Patten AR, Brocardo PS, Christie BR. Omega-3 supplementation can restore glutathione levels and prevent oxidative damage caused by prenatal ethanol exposure. J Nutr Biochem. 2013;24:760–69. doi: 10.1016/j.jnutbio.2012.04.003.
  • Hannigan JH, Berman RF, Zajac CS. Environmental enrichment and the behavioral effects of prenatal exposure to alcohol in rats. Neurotoxicol Teratol. 1993;15:261–66. doi: 10.1016/0892-0362(93)90007-B.
  • Parks EA, McMechan AP, Hannigan JH, Berman RF. Environmental enrichment alters neurotrophin levels after fetal alcohol exposure in rats. Alcohol Clin Exp Res. 2008;32:1741–51. doi: 10.1111/j.1530-0277.2008.00759.x.
  • Klintsova AY, Cowell RM, Swain RA, Napper RM, Goodlett CR, Greenough WT. Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats. I. Behavioral results. Brain Res. 1998;800:48–61. doi: 10.1016/S0006-8993(98)00495-8.
  • Klintsova AY, Scamra C, Hoffman M, Napper RMA, Goodlett CR, Greenough WT. Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats: II. A quantitative stereological study of synaptic plasticity in female rat cerebellum. Brain Res. 2002;937:83–93. doi: 10.1016/S0006-8993(02)02492-7.
  • Patten AR, Brocardo PS, Sakiyama C, Wortman RC, Noonan A, Gil-Mohapel J, Christie BR. Impairments in hippocampal synaptic plasticity following prenatal ethanol exposure are dependent on glutathione levels. Hippocampus. 2013;23:1463–75. doi: 10.1002/hipo.22199.
  • Chen MH, Hong CL, Wang YT, Wang TJ, Chen JR. The effect of astaxanthin treatment on the rat model of fetal alcohol spectrum disorders (FASD). Brain Res Bull. 2022;183:57–72. doi: 10.1016/j.brainresbull.2022.02.017.
  • Cantacorps L, Montagud-Romero S, Valverde O. Curcumin treatment attenuates alcohol-induced alterations in a mouse model of foetal alcohol spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2020;100:109899. doi: 10.1016/j.pnpbp.2020.109899.
  • Sharma N, Luhach K, Golani LK, Singh B, Sharma B. Vinpocetine, a PDE1 modulator, regulates markers of cerebral health, inflammation, and oxidative stress in a rat model of prenatal alcohol-induced experimental attention deficit hyperactivity disorder. Alcohol. 2022;105:25–34. doi: 10.1016/j.alcohol.2022.08.005.
  • Nunes F, Ferreira-Rosa K, Pereira Mdos S, Kubrusly RC, Manhaes AC, Abreu-Villaca Y, Filgueiras CC. Acute administration of vinpocetine, a phosphodiesterase type 1 inhibitor, ameliorates hyperactivity in a mice model of fetal alcohol spectrum disorder. Drug Alcohol Depen. 2011;119:81–87. doi: 10.1016/j.drugalcdep.2011.05.024.
  • Abreu-Villaca Y, Carvalho-Graca AC, Skinner G, Lotufo BM, Duarte-Pinheiro VHS, Ribeiro-Carvalho A, Manhaes AC, Filgueiras CC. Hyperactivity and memory/learning deficits evoked by developmental exposure to nicotine and/or ethanol are mitigated by cAMP and cGMP signaling cascades activation. Neurotoxicology. 2018;66:150–59. doi: 10.1016/j.neuro.2018.04.003.
  • Filgueiras CC, Krahe TE, Medina AE. Phosphodiesterase type 1 inhibition improves learning in rats exposed to alcohol during the third trimester equivalent of human gestation. Neurosci Lett. 2010;473:202–07. doi: 10.1016/j.neulet.2010.02.046.
  • Medina AE, Krahe TE, Ramoa AS. Restoration of neuronal plasticity by a phosphodiesterase type 1 inhibitor in a model of fetal alcohol exposure. J Neurosci. 2006;26:1057–60. doi: 10.1523/JNEUROSCI.4177-05.2006.
  • Lantz CL, Wang W, Medina AE. Early alcohol exposure disrupts visual cortex plasticity in mice. Int J Dev Neurosci. 2012;30:351–57. doi: 10.1016/j.ijdevneu.2012.05.001.
  • De La Fuente-Ortega E, Plaza-Briceño W, Vargas-Robert S, Haeger P. Prenatal ethanol exposure misregulates genes involved in iron homeostasis promoting a maladaptation of iron dependent hippocampal synaptic transmission and plasticity. Front Pharmacol. 2019;10:1312. doi: 10.3389/fphar.2019.01312.
  • Li H, Gao L, Ye Z, Du J, Li W, Liang L, Zeng Q, Xi J, Yue W, Li Z. Protective effects of resveratrol on the ethanol-induced disruption of retinogenesis in pluripotent stem cell-derived organoids. FEBS Open Bio. 2023;13:845–66. doi: 10.1002/2211-5463.13601.
  • Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules (Basel, Switzerland). 2009;14:3446–85. doi: 10.3390/molecules14093446.
  • Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104. doi: 10.1038/sj.cdd.4400476.
  • Goeke CM, Hashimoto JG, Guizzetti M, Vitalone A. Effects of ethanol-and choline-treated astrocytes on hippocampal neuron neurite outgrowth in vitro. Sci Prog. 2021;104:00368504211018943. doi: 10.1177/00368504211018943.
  • Ceccarini MR, Ceccarelli V, Codini M, Fettucciari K, Calvitti M, Cataldi S, Albi E, Vecchini A, Beccari T. The polyunsaturated fatty acid EPA, but not DHA, enhances neurotrophic factor expression through epigenetic mechanisms and protects against parkinsonian neuronal cell death. Int J Mol Sci. 2022;23:16176. doi: 10.3390/ijms232416176.
  • Mooney SM, Billings E, McNew M, Munson CA, Shaikh SR, Smith SM. Behavioral changes in FPR2/ALX and Chemr23 receptor knockout mice are exacerbated by prenatal alcohol exposure. Front Neurosci. 2023;17:17. doi: 10.3389/fnins.2023.1187220.
  • Ojeda L, Nogales F, Murillo L, Carreras O. The role of folic acid and selenium against oxidative damage from ethanol in early life programming: a review. Biochem Cell Biol. 2018;96:178–88. doi: 10.1139/bcb-2017-0069.
  • Ezquer F, Quintanilla ME, Moya-Flores F, Morales P, Munita JM, Olivares B, Landskron G, Hermoso MA, Ezquer M, Herrera-Marschitz M, et al. Innate gut microbiota predisposes to high alcohol consumption. Addict Biol. 2021;26:e13018. doi: 10.1111/adb.13018.
  • Fila M, Chojnacki C, Chojnacki J, Blasiak J. Is an “epigenetic diet” for migraines justified? The case of folate and DNA methylation. Nutrients. 2019;11:2763. doi: 10.3390/nu11112763.
  • Medici V, Halsted CH. Folate, alcohol, and liver disease. Mol Nutr Food Res. 2013;57:596–606. doi: 10.1002/mnfr.201200077.
  • Hamid A, Wani NA, Kaur J. New perspectives on folate transport in relation to alcoholism-induced folate malabsorption – association with epigenome stability and cancer development. FEBS J. 2009;276:2175–91. doi: 10.1111/j.1742-4658.2009.06959.x.
  • Murillo-Fuentes ML, Murillo ML, Carreras O. Effects of maternal ethanol consumption during pregnancy or lactation on intestinal absorption of folic acid in suckling rats. Life Sci. 2003;73:2199–209. doi: 10.1016/S0024-3205(03)00570-8.
  • Simon-O’Brien E, Alaux-Cantin S, Warnault V, Buttolo R, Naassila M, Vilpoux C. The histone deacetylase inhibitor sodium butyrate decreases excessive ethanol intake in dependent animals. Addict Biol. 2015;20:676–89. doi: 10.1111/adb.12161.
  • Jeanblanc J, Lemoine S, Jeanblanc V, Alaux-Cantin S, Naassila M. The class I-Specific HDAC inhibitor MS-275 decreases motivation to consume alcohol and relapse in heavy drinking rats. Int J Neuropsychopharmacol. 2015;18:pyv029. doi: 10.1093/ijnp/pyv029.
  • Wei H, Yu C, Zhang C, Ren Y, Guo L, Wang T, Chen F, Li Y, Zhang X, Wang H, et al. Butyrate ameliorates chronic alcoholic central nervous damage by suppressing microglia-mediated neuroinflammation and modulating the microbiome-gut-brain axis. Biomed Pharmacother. 2023;160:114308. doi: 10.1016/j.biopha.2023.114308.
  • Dursun I, Jakubowska-Doğru E, Uzbay T. Effects of prenatal exposure to alcohol on activity, anxiety, motor coordination, and memory in young adult wistar rats. Pharmacol Biochem Behav. 2006;85:345–55. doi: 10.1016/j.pbb.2006.09.001.
  • Walter KR, Ricketts DK, Presswood BH, Smith SM, Mooney SM. Prenatal alcohol exposure causes persistent microglial activation and age- and sex- specific effects on cognition and metabolic outcomes in an Alzheimer’s Disease mouse model. Am J Drug Alcohol Abuse. 2022;49:1–19. doi: 10.1080/00952990.2022.2119571.
  • Ezquer F, Quintanilla ME, Morales P, Santapau D, Munita JM, Moya-Flores F, Ezquer M, Herrera-Marschitz M, Israel Y. A dual treatment blocks alcohol binge-drinking relapse: microbiota as a new player. Drug Alcohol Depen. 2022;236:109466. doi: 10.1016/j.drugalcdep.2022.109466.
  • Plaza W, Gaschino F, Gutierrez C, Santibañez N, Estay-Olmos C, Sotomayor-Zárate R, De la Fuente-Ortega E, Pautassi RM, Haeger PA. Pre- and postnatal alcohol exposure delays, in female but not in male rats, the extinction of an auditory fear conditioned memory and increases alcohol consumption. Dev Psychobiol. 2020;62:519–31. doi: 10.1002/dev.21925.
  • Tipyasang R, Kunwittaya S, Mukda S, Kotchabhakdi NJ, Kotchabhakdi N. Enriched environment attenuates changes in water-maze performance and BDNF level caused by prenatal alcohol exposure. Excli J. 2014;13:536–47.
  • Ratuski AS, Weary DM. Environmental enrichment for rats and mice housed in laboratories: a metareview. Anim. 2022;12:414. doi: 10.3390/ani12040414.
  • Leger M, Paizanis E, Dzahini K, Quiedeville A, Bouet V, Cassel J-C, Freret T, Schumann-Bard P, Boulouard M. Environmental enrichment duration differentially affects behavior and neuroplasticity in adult mice. Cereb Cortex. 2014;25:4048–61. doi: 10.1093/cercor/bhu119.
  • Mora-Gallegos A, Rojas-Carvajal M, Salas S, Saborío-Arce A, Fornaguera- Trítrías J, Brenes JC. Age-dependent effects of environmental enrichment on spatial memory and neurochemistry. Neurobiol Learn Mem. 2015;118:96–104. doi: 10.1016/j.nlm.2014.11.012.
  • Sampedro-Piquero P, Begega A, Arias JL. Increase of glucocorticoid receptor expression after environmental enrichment: relations to spatial memory, exploration and anxiety-related behaviors. Physiol Behav. 2014;129:118–29. doi: 10.1016/j.physbeh.2014.02.048.
  • Solinas M, Thiriet N, Chauvet C, Jaber M. Prevention and treatment of drug addiction by environmental enrichment. Prog Neurobiol. 2010;92:572–92. doi: 10.1016/j.pneurobio.2010.08.002.
  • Vivinetto AL, Suárez MM, Rivarola MA. Neurobiological effects of neonatal maternal separation and post-weaning environmental enrichment. Behav Brain Res. 2013;240:110–18. doi: 10.1016/j.bbr.2012.11.014.
  • Lam VYY, Raineki C, Ellis L, Yu W, Weinberg J. Interactive effects of prenatal alcohol exposure and chronic stress in adulthood on anxiety-like behavior and central stress-related receptor mRNA expression: Sex- and time-dependent effects. Psychoneuroendocrinology. 2018;97:8–19. doi: 10.1016/j.psyneuen.2018.06.018.
  • Coles CD, Brown RT, Smith IE, Platzman KA, Erickson S, Falek A. Effects of prenatal alcohol exposure at school age. I. Physical and cognitive development. Neurotoxicol Teratol. 1991;13:357–67. doi: 10.1016/0892-0362(91)90084-A.
  • Taggart TC, Simmons RW, Thomas JD, Riley EP. Children with heavy prenatal alcohol exposure exhibit atypical gait characteristics. Alcohol Clin Exp Res. 2017;41:1648–55. doi: 10.1111/acer.13450.
  • Dembele K, Yao XH, Chen L, Nyomba BL. Intrauterine ethanol exposure results in hypothalamic oxidative stress and neuroendocrine alterations in adult rat offspring. Am J Physiol Regul Integr Comp Physiol. 2006;291:R796–802. doi: 10.1152/ajpregu.00633.2005.
  • Brocardo PS, Gil-Mohapel J, Wortman R, Noonan A, McGinnis E, Patten AR, Christie BR. The effects of ethanol exposure during distinct periods of brain development on oxidative stress in the adult rat brain. Alcohol Clin Exp Res. 2017;41:26–37. doi: 10.1111/acer.13266.
  • Zhang Y, Wang H, Li Y, Peng Y. A review of interventions against fetal alcohol spectrum disorder targeting oxidative stress. Int J Dev Neurosci. 2018;71:140–45. doi: 10.1016/j.ijdevneu.2018.09.001.
  • Brocardo PS, Gil-Mohapel J, Christie BR. The role of oxidative stress in fetal alcohol spectrum disorders. Brain Res Rev. 2011;67:209–25. doi: 10.1016/j.brainresrev.2011.02.001.
  • Dringen R, Hamprecht B. N-acetylcysteine, but not methionine or 2-oxothiazolidine-4-carboxylate, serves as cysteine donor for the synthesis of glutathione in cultured neurons derived from embryonal rat brain. Neurosci Lett. 1999;259:79–82. doi: 10.1016/S0304-3940(98)00894-5.
  • Bradley R, Lakpa KL, Burd M, Mehta S, Katusic MZ, Greenmyer JR. Fetal alcohol spectrum disorder and iron homeostasis. Nutrients. 2022;14:4223. doi: 10.3390/nu14204223.
  • Huebner SM, Helfrich KK, Saini N, Blohowiak SE, Cheng AA, Kling PJ, Smith SM. Dietary iron fortification normalizes fetal hematology, hepcidin, and iron distribution in a rat model of prenatal alcohol exposure. Alcohol Clin Exp Res. 2018;42:1022–33. doi: 10.1111/acer.13754.
  • Carter RC, Senekal M, Duggan CP, Dodge NC, Meintjes EM, Molteno CD, Jacobson JL, Jacobson SW. Gestational weight gain and dietary energy, iron, and choline intake predict severity of fetal alcohol growth restriction in a prospective birth cohort. Am J Clin Nutr. 2022;116:460–69. doi: 10.1093/ajcn/nqac101.
  • Carter RC, Dodge NC, Molteno CD, Meintjes EM, Jacobson JL, Jacobson SW. Mediating and moderating effects of iron homeostasis alterations on fetal alcohol-related growth and neurobehavioral deficits. Nutrients. 2022;14:4432. doi: 10.3390/nu14204432.
  • Achur RN, Freeman WM, Vrana KE. Circulating cytokines as biomarkers of alcohol abuse and alcoholism. J Neuroimmune Pharmacol. 2010;5:83–91. doi: 10.1007/s11481-009-9185-z.
  • Drew PD, Kane CJ. Fetal alcohol spectrum disorders and neuroimmune changes. Int Rev Neurobiol. 2014;118:41–80.
  • Kane CJM, Drew PD. Neuroinflammatory contribution of microglia and astrocytes in fetal alcohol spectrum disorders. J Neurosci Res. 2021;99:1973–85. doi: 10.1002/jnr.24735.
  • Merrill JE. Tumor necrosis factor alpha, interleukin 1 and related cytokines in brain development: normal and pathological. Dev Neurosci. 1992;14:1–10. doi: 10.1159/000111642.
  • Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior. Front Neuroendocrinol. 2012;33:267–86. doi: 10.1016/j.yfrne.2012.08.006.
  • Green HF, Nolan YM. Inflammation and the developing brain: consequences for hippocampal neurogenesis and behavior. Neurosci Biobehav Rev. 2014;40:20–34. doi: 10.1016/j.neubiorev.2014.01.004.
  • Conductier G, Blondeau N, Guyon A, Nahon JL, Rovère C. The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol. 2010;224:93–100. doi: 10.1016/j.jneuroim.2010.05.010.
  • Bose S, Cho J. Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases. Arch Pharm Res. 2013;36:1039–50. doi: 10.1007/s12272-013-0161-z.
  • Gao L, Tang H, Nie K, Wang L, Zhao J, Gan R, Huang J, Feng S, Zhu R, Duan Z, et al. MCP-1 and CCR2 gene polymorphisms in Parkinson’s disease in a Han Chinese cohort. Neurol Sci. 2015;36:571–76. doi: 10.1007/s10072-014-1990-3.
  • Ren Z, Wang X, Yang F, Xu M, Frank JA, Wang H, Wang S, Ke ZJ, Luo J. Ethanol-induced damage to the developing spinal cord: The involvement of CCR2 signaling. Biochimica et biophysica acta. Mol Basis Dis. 2017;1863:2746–61. doi: 10.1016/j.bbadis.2017.07.035.
  • Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism. 2021;114:154338. doi: 10.1016/j.metabol.2020.154338.
  • Bernardo A, Levi G, Minghetti L. Role of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and its natural ligand 15-deoxy-Delta12, 14-prostaglandin J2 in the regulation of microglial functions. Eur J Neurosci. 2000;12:2215–23. doi: 10.1046/j.1460-9568.2000.00110.x.
  • Drew PD, Xu J, Racke MK. PPAR-gamma: therapeutic potential for multiple sclerosis. PPAR Res. 2008;2008:627463. doi: 10.1155/2008/627463.
  • Jiang Q, Heneka M, Landreth GE. The role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in Alzheimer’s disease: therapeutic implications. CNS Drugs. 2008;22:1–14. doi: 10.2165/00023210-200822010-00001.
  • Möller T, Bard F, Bhattacharya A, Biber K, Campbell B, Dale E, Eder C, Gan L, Garden GA, Hughes ZA, et al. Critical data-based re-evaluation of minocycline as a putative specific microglia inhibitor. Glia. 2016;64:1788–94. doi: 10.1002/glia.23007.
  • Carson MD, Warner AJ, Hathaway-Schrader JD, Geiser VL, Kim J, Gerasco JE, Hill WD, Lemasters JJ, Alekseyenko AV, Wu Y, et al. Minocycline-induced disruption of the intestinal FXR/FGF15 axis impairs osteogenesis in mice. JCI Insight. 2023;8. doi: 10.1172/jci.insight.160578.
  • Loughney K, Martins TJ, Harris EA, Sadhu K, Hicks JB, Sonnenburg WK, Beavo JA, Ferguson K. Isolation and characterization of cDnas corresponding to two human calcium, calmodulin-regulated, 3‘,5’-cyclic nucleotide phosphodiesterases. J Biol Chem. 1996;271:796–806. doi: 10.1074/jbc.271.2.796.
  • Medina AE. Therapeutic utility of phosphodiesterase type I inhibitors in neurological conditions. Front Neurosci. 2011;5:21. doi: 10.3389/fnins.2011.00021.
  • Jeon KI, Xu X, Aizawa T, Lim JH, Jono H, Kwon DS, Abe J, Berk BC, Li JD, Yan C. Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Natl Acad Sci USA. 2010;107:9795–800. doi: 10.1073/pnas.0914414107.
  • Nanji AA, Jokelainen K, Tipoe GL, Rahemtulla A, Thomas P, Dannenberg AJ. Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. Am J Physiol Gastrointest Liver Physiol. 2003;284:G321–327. doi: 10.1152/ajpgi.00230.2002.
  • Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, Hu C, Xu R. Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Des Devel Ther. 2021;15:4503–25. doi: 10.2147/DDDT.S327378.
  • Yang YM, Cho YE, Hwang S. Crosstalk between oxidative stress and inflammatory liver injury in the pathogenesis of alcoholic liver disease. Int J Mol Sci. 2022;23:774. doi: 10.3390/ijms23020774.
  • Burckhardt M, Herke M, Wustmann T, Watzke S, Langer G, Fink A. Omega-3 fatty acids for the treatment of dementia. Cochrane Db Syst Rev. 2016;4:Cd009002. doi: 10.1002/14651858.CD009002.pub3.
  • Montes S, Yee-Rios Y, Páez-Martínez N. Environmental enrichment restores oxidative balance in animals chronically exposed to toluene: comparison with melatonin. Brain Res Bull. 2019;144:58–67. doi: 10.1016/j.brainresbull.2018.11.007.
  • Doulames V, Lee S, Shea TB. Environmental enrichment and social interaction improve cognitive function and decrease reactive oxidative species in normal adult mice. Int J Neurosci. 2014;124:369–76. doi: 10.3109/00207454.2013.848441.
  • Suarez A, Fabio MC, Bellia F, Fernandez MS, Pautassi RM. Environmental enrichment during adolescence heightens ethanol intake in female, but not male, adolescent rats that are selectively bred for high and low ethanol intake during adolescence. Am J Drug Alcohol Abuse. 2020;46:553–64. doi: 10.1080/00952990.2020.1770778.
  • Berardo LR, Fabio MC, Pautassi RM. Post-weaning environmental enrichment, but not chronic maternal isolation, enhanced ethanol intake during Periadolescence and early adulthood. Front Behav Neurosci. 2016;10:195. doi: 10.3389/fnbeh.2016.00195.
  • Ratuski A, Weary D. Environmental enrichment for rats and mice housed in laboratories: a metareview. Animals. 2022;12:414. doi: 10.3390/ani12040414.
  • Bertrand J. Interventions for children with fetal alcohol spectrum disorders research C. Interventions for children with fetal alcohol spectrum disorders (FASDs): overview of findings for five innovative research projects. Res Dev Disabil. 2009;30:986–1006. doi: 10.1016/j.ridd.2009.02.003.
  • Crofton EJ, Zhang Y, Green TA. Inoculation stress hypothesis of environmental enrichment. Neurosci Biobehav Rev. 2015;49:19–31. doi: 10.1016/j.neubiorev.2014.11.017.
  • Salguero A, Barey A, Virgolini RG, Mujica V, Fabio MC, Miranda-Morales RS, Marengo L, Camarini R, Pautassi RM. Juvenile variable stress modulates, in female but not in male wistar rats, ethanol intake in adulthood. Neurotoxicol Teratol. 2023;100:107306. doi: 10.1016/j.ntt.2023.107306.
  • Wozniak JR, Fink BA, Fuglestad AJ, Eckerle JK, Boys CJ, Sandness KE, Radke JP, Miller NC, Lindgren C, Brearley AM, et al. Four-year follow-up of a randomized controlled trial of choline for neurodevelopment in fetal alcohol spectrum disorder. J Neurodev Disord. 2020;12:9. doi: 10.1186/s11689-020-09312-7.
  • Gimbel BA, Anthony ME, Ernst AM, Roediger DJ, de Water E, Eckerle JK, Boys CJ, Radke JP, Mueller BA, Fuglestad AJ, et al. Long-term follow-up of a randomized controlled trial of choline for neurodevelopment in fetal alcohol spectrum disorder: corpus callosum white matter microstructure and neurocognitive outcomes. J Neurodev Disord. 2022;14:59. doi: 10.1186/s11689-022-09470-w.
  • Jacobson SW, Carter RC, Molteno CD, Stanton ME, Herbert JS, Lindinger NM, Lewis CE, Dodge NC, Hoyme HE, Zeisel SH, et al. Efficacy of maternal choline supplementation during pregnancy in mitigating adverse effects of prenatal alcohol exposure on growth and cognitive function: a randomized, double-blind, placebo-controlled clinical trial. Alcohol Clin Exp Res. 2018;42:1327–41. doi: 10.1111/acer.13769.
  • Warton FL, Molteno CD, Warton CMR, Wintermark P, Lindinger NM, Dodge NC, Zöllei L, van der Kouwe AJW, Carter RC, Jacobson JL, et al. Maternal choline supplementation mitigates alcohol exposure effects on neonatal brain volumes. Alcohol Clin Exp Res. 2021;45:1762–74. doi: 10.1111/acer.14672.
  • Pérez-Reytor D, Karahanian E. Alcohol use disorder, neuroinflammation, and intake of dietary fibers: a new approach for treatment. Am J Drug Alcohol Abuse. 2023;49:283–89. doi: 10.1080/00952990.2022.2114005.
  • Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front Immunol. 2021;12:578386. doi: 10.3389/fimmu.2021.578386.
  • Wang S, Wu D, Wu F, Sun H, Wang X, Meng H, Lin Q, Jin K, Wang F. Prevotella histicola suppresses ferroptosis to mitigate ethanol-induced gastric mucosal lesions in mice. BMC Complementary Med Ther. 2023;23:118. doi: 10.1186/s12906-023-03946-5.
  • Johnson S, Knight R, Marmer DJ, Steele RW. Immune deficiency in fetal alcohol syndrome. Pediatr Res. 1981;15:908–11. doi: 10.1203/00006450-198106000-00005.
  • Zhang X, Sliwowska JH, Weinberg J. Prenatal alcohol exposure and fetal programming: effects on neuroendocrine and immune function. Exp Biol Med (Maywood). 2005;230:376–88. doi: 10.1177/15353702-0323006-05.
  • Bermúdez V, Finol F, Parra N, Parra M, Pérez A, Peñaranda L, Vílchez D, Rojas J, Arráiz N, Velasco M. PPAR-gamma agonists and their role in type 2 diabetes mellitus management. Am J Ther. 2010;17:274–83. doi: 10.1097/MJT.0b013e3181c08081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.