540
Views
13
CrossRef citations to date
0
Altmetric
Full Papers

EJBot-II: an optimized skid-steering propeller-type climbing robot with transition mechanism

ORCID Icon, , , , , & show all
Pages 1042-1059 | Received 26 Dec 2018, Accepted 08 Aug 2019, Published online: 29 Aug 2019

References

  • Alkalla MG, Fanni MA, Mohamed AF. Versatile climbing robot for vessels inspection. 2015 International Conference on Control, Automation and Robotics (ICCAR); 2015 May; p. 18–23.
  • Alkalla M, Fanni M, Mohamed A. A novel propeller-type climbing robot for vessels inspection. 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM); 2015 July; p. 1623–1628.
  • Alkalla MG, Fanni MA, Mohamed AM, et al. Tele-operated propeller-type climbing robot for inspection of petrochemical vessels. Ind Robot: Int J. 2017;44(2):166–177. doi:10.1108/IR-07-2016-0182
  • Ge D, Ren C, Matsuno T, et al. Guide rail design for a passive suction cup based wall-climbing robot. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016 Oct; p. 5776–5781.
  • Zhu H, Guan Y, Wu W, et al. Autonomous pose detection and alignment of suction modules of a biped wall-climbing robot. IEEE ASME Trans Mechatron. 2015 April;20(2):653–662. doi: 10.1109/TMECH.2014.2317190
  • Yuan YY, Lu WC, Kao CJ, et al. Design and implementation of an inchworm robot. 2016 International Conference on Advanced Robotics and Intelligent Systems (ARIS); 2016 Aug; p. 1–1.
  • Lee G, Kim H, Seo K, et al. Multitrack: a multi-linked track robot with suction adhesion for climbing and transition. Robot Auton Syst. 2015;72:207–216. doi: 10.1016/j.robot.2015.05.011
  • Tramacere F, Beccai L, Mattioli F, et al. Artificial adhesion mechanisms inspired by octopus suckers. 2012 IEEE International Conference on Robotics and Automation; 2012 May; p. 3846–3851.
  • Zhang H, Wang W, Gonzlez-Gmez J, et al. Design and realization of a novel modular climbing caterpillar using low-frequency vibrating passive suckers. Adv Robot. 2009;23(7–8):889–906. doi:10.1163/156855309X442990.
  • Nejadfard A, Schütz S, Schmidt D, et al. Design of a stable controller for the climbing robot CREA. Springer International: Cham; 2016; p. 165–178. doi:10.1007/978-3-319-26453-0_10.
  • Schmidt D, Hillenbrand C, Berns K. Omnidirectional locomotion and traction control of the wheel-driven, wall-climbing robot, cromsci. Robot J. 2011;29(7):991–1003. doi: 10.1017/S0263574711000294
  • Hillenbrand C, Schmidt D, Berns K. Cromsci: development of a climbing robot with negative pressure adhesion for inspections. Ind Robot: Int J. 2008;35(3):228–237. doi:10.1108/01439910810868552.
  • Bonaccorso F, Longo D, Muscato G. Modelling of an innovative actuator for climbing robot adhesion. 12th International Conference on Climbing and Walking Robots (CLAWAR); World Scientific; 2009.
  • Xiao J, Sadegh A. City-climber: a new generation wall-climbing robots, Climbing and walking robots: towards new applications. InTech. 2007.
  • Koo IM, Trong TD, Lee YH, et al. Development of wall climbing robot system by using impeller type adhesion mechanism. J Intell Robot Syst. 2013;72(1):57–72. doi: 10.1007/s10846-013-9820-z
  • Lee J, Kim S. Suction based wall climbing robot for edge movement. Springer: Dordrecht; 2014; p. 687–696. doi:10.1007/978-94-017-8798-7_79
  • Beardsley P. VertiGo a wall-climbing robot including ground-wall transition [cited 2015 Dec 29]. Available from: https://www.disneyresearch.com/publication/vertigo/.
  • Nishi A, Miyagi H. Propeller type wall-climbing robot for inspection use. Proc 10th Int Symp, on Automation and Robotics in Construction (ISARC). 1993; p. 189–196.
  • Nishi A, Miyagi H, Ishihara K. Development of wall inspection robots. Proc 12th Int Symp, on Automation and Robotics in Construction (ISARC). 1995; p. 103–108.
  • Tovar A, Patel NM, Niebur GL, et al. Topology optimization using a hybrid cellular automaton method with local control rules. J Mech Des. 2006;128(6):1205–1216. doi: 10.1115/1.2336251
  • Bendsoe MP, Sigmund O. Topology optimization – theory, methods and applications, handbook. Berlin: Springer-Verlag; 2003; p. 1–13.
  • Svanberg K. The method of moving asymptotesa new method for structural optimization. Int J Numer Methods Eng. 1987;24(2):359–373. doi: 10.1002/nme.1620240207
  • Tovar A, Khandelwal K. Topology optimization for minimum compliance using a control strategy. Eng Struct. 2013;48:674–682. http://www.sciencedirect.com/science/article/pii/S0141029612006219 doi: 10.1016/j.engstruct.2012.12.008
  • Sigmund O, Maute K. Topology optimization approaches. Struct Multidiscipl Optim. 2013;48(6):1031–1055. doi:10.1007/s00158-013-0978-6
  • Torayca industries, inc. of carbon fiber reinforced polymer [cited 2017 Jan 15]. Available from: http://www.torayca.com/en/.
  • Fanni MA, Alkalla MG, Mohamed AM. Propeller type skid steering climbing robot based on a hybrid actuation system. Int J Robot Autom. 2018;33(3). doi:10.2316/Journal.206.2018.3.206-5017
  • Kozłowski K, Pazderski D. Modeling and control of a 4-wheel skid-steering mobile robot. Int J Appl Math Comput Sci. 2004;14(4):477–496.
  • Kozlowski K, Pazderski D. Practical stabilization of a skid-steering mobile robot – a kinematic-based approach. In: 2006 IEEE International Conference on Mechatronics; 2006 July; p. 519–524.
  • Wong J, Preston-Thomas J. On the characterization of the shear stress-displacement relationship of terrain. J Terramech. 1983;19(4):225–234. doi: 10.1016/0022-4898(83)90028-9
  • Wong J, Chiang C. A general theory for skid steering of tracked vehicles on firm ground. Proc Inst Mech Eng Part D: J Autom Eng. 2001;215(3):343–355. doi: 10.1243/0954407011525683
  • Wong JY. Theory of ground vehicles. New York: John Wiley & Sons; 2008.
  • Fierro R, Lewis FL. Control of a nonholomic mobile robot: backstepping kinematics into dynamics. J Robot Syst. 1997;14(3):149–163. doi: 10.1002/(SICI)1097-4563(199703)14:3<149::AID-ROB1>3.0.CO;2-R
  • Pazderski D, Kozlowski K, Dixon W. Tracking and regulation control of a skid steering vehicle. American nuclear society tenth international topical meeting on robotics and remote systems; Citeseer; 2004. p. 369–376.
  • Yu W, Chuy Jr OY, Collins Jr EG, et al. Analysis and experimental verification for dynamic modeling of a skid-steered wheeled vehicle. IEEE Trans Robot. 2010;26(2):340–353. doi: 10.1109/TRO.2010.2042540

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.