375
Views
1
CrossRef citations to date
0
Altmetric
Full papers

Selecting and designing grippers for an assembly task in a structured approach

, ORCID Icon, , &
Pages 381-397 | Received 27 Jul 2020, Accepted 18 Dec 2020, Published online: 11 Jan 2021

References

  • Schmalz J, Reinhart G. Automated selection and dimensioning of gripper systems. Procedia CIRP. 2014;23:212–216.
  • Honarpardaz M, Ölvander J, Tarkian M. Fast finger design automation for industrial robots. Rob Auton Syst. 2019;113:120–131.
  • Pham D, Yeo S. Strategies for gripper design and selection in robotic assembly. Int J Product Res. 1991;29(2):303–316.
  • Cannon BR, Lillian TD, Magleby SP, et al. A compliant end-effector for microscribing. Precision Engin. 2005;29(1):86–94.
  • Nie K, Wan W, Harada K. An adaptive robotic gripper with l-shape fingers for peg-in-hole tasks. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. p. 4022–4028.
  • Miller AT, Knoop S, Christensen HI, et al. Automatic grasp planning using shape primitives. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), vol. 2, IEEE; 2003. p. 1824–1829.
  • Przybylski M, Asfour T, Dillmann R. Planning grasps for robotic hands using a novel object representation based on the medial axis transform. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2011. p. 1781–1788.
  • Huebner K, Kragic D. Selection of robot pre-grasps using box-based shape approximation. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2008. p. 1765–1770.
  • Vahrenkamp N, Westkamp L, Yamanobe N, et al. Part-based grasp planning for familiar objects. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). IEEE; p. 919–925. 2016.
  • Bohg J, Morales A, Asfour T, et al. Data-driven grasp synthesis–a survey. IEEE Trans Robot. 2013;30(2):289–309.
  • Pham DT, Gourashi NS, Eldukhri EE. Automated configuration of gripper systems for assembly tasks. Proc Inst Mech Engin Part B: J Engin Manufact. 2007;221(11):1643–1649.
  • Harada K, Tsuji T, Uto S, et al. Stability of soft-finger grasp under gravity. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2014. p. 883–888.
  • Ciocarlie M, Lackner C, Allen P. Soft finger model with adaptive contact geometry for grasping and manipulation tasks. In: Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'07). IEEE; 2007. p. 219–224.
  • Harada K, Tsuji T, Nagata K, et al. Grasp planning for parallel grippers with flexibility on its grasping surface. In: 2011 IEEE International Conference on Robotics and Biomimetics. IEEE; 2011. p. 1540–1546.
  • Bicchi A, Kumar V. Robotic grasping and contact: a review. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 1. IEEE; 2000. p. 348–353.
  • Murray RM. A mathematical introduction to robotic manipulation. CRC Press; 2017.
  • Honarpardaz M, Meier M, Haschke R. Fast grasp tool design: from force to form closure. In: 2017 13th IEEE Conference on Automation Science and Engineering (CASE). IEEE; 2017. p. 782–788.
  • Song H, Wang MY, Hang K. Fingertip surface optimization for robust grasping on contact primitives. IEEE Robot Automat Lett. 2018;3(2):742–749.
  • Rodriguez A, Mason MT. Effector form design for 1dof planar actuation. In: 2013 IEEE International Conference on Robotics and Automation. IEEE; 2013. p. 349–356.
  • Taylor O, Rodriguez A. Optimal shape and motion planning for dynamic planar manipulation. Auton Robots. 2019;43(2):327–344.
  • Chavan-Dafle N, Mason MT, Staab H, et al. A two-phase gripper to reorient and grasp. In: 2015 IEEE International Conference on Automation Science and Engineering (CASE). IEEE; 2015. p. 1249–1255.
  • Birglen L, Schlicht T. A statistical review of industrial robotic grippers. Robot Comput Integr Manuf. 2018;49:88–97.
  • Hermann K, Hostettler R, Zimmermann M, et al. A joint-selective robotic gripper with actuation mode switching. In: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). IEEE; 2019. p. 1532–1539.
  • Kramberger A, Wolniakowski A, Rasmussen MH, et al. Automatic fingertip exchange system for robotic grasping in flexible production processes. In: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). IEEE; 2019. p. 1664–1669.
  • Harada K, Nakayama K, Wan W, et al. Tool exchangeable grasp/assembly planner. In: International Conference on Intelligent Autonomous Systems. Springer; 2018. p. 799–811.
  • Nakayama K, Wan W, Harada K. Designing grasping tools for robotic assembly based on shape analysis of parts. In: 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids). IEEE; 2019. p. 1–7.
  • Goldfeder C, Allen PK, Lackner C, et al. Grasp planning via decomposition trees. In: Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE; 2007. p. 4679–4684.
  • Cutkosky MR. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans Rob Autom. 1989;5(3):269–279.
  • Shapira L, Shamir A, Cohen-Or D. Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis Comput. 2008;24(4):249.
  • The CGAL Project. CGAL user and reference manual. 5.0.2 ed. CGAL Editorial Board; 2020.
  • Shamir A. A survey on mesh segmentation techniques. In: Computer graphics forum. Vol. 27. Wiley Online Library; 2008. p. 1539–1556.
  • Cignoni P, Callieri M, Corsini M, et al. MeshLab: an Open-Source Mesh Processing Tool. In: Scarano V, Chiara RD, Erra U, editors. Eurographics Italian Chapter Conference. The Eurographics Association; 2008.
  • Rusu RB, Cousins S. 3d is here: point cloud library (pcl). In: 2011 IEEE international conference on robotics and automation. IEEE; 2011. p. 1–4.
  • Mosemann H, Wahl FM. Automatic decomposition of planned assembly sequences into skill primitives. IEEE Trans Rob Autom. 2001;17(5):709–718.
  • Yamanobe N, Wan W, Ramirez-Alpizar IG, et al. A brief review of affordance in robotic manipulation research. Adv Robot. 2017;31(19–20):1086–1101.
  • Wan W, Harada K, Kanehiro F. Planning Grasps With Suction Cups and Parallel Grippers Using Superimposed Segmentation of Object Meshes. IEEE Trans Robot. 2020;1–19. 10.1109/TRO.2020.3014036
  • Frville A. The multidimensional 0–1 knapsack problem: an overview. Eur J Oper Res. 2004;155(1):1–21.
  • Kolesar PJ. A branch and bound algorithm for the knapsack problem. Science¡/DIFdel¿Manage Sci. 1967;13(9):723–735.
  • Le T, Duan Y. A primitive-based 3d segmentation algorithm for mechanical cad models. Comput Aided Geom Des. 2017;52:231–246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.