452
Views
0
CrossRef citations to date
0
Altmetric
Full Papers

A low computation-cost locomotion control for underwater snake robot based on Monte Carlo model predictive control and curvature derivative control

&
Pages 770-783 | Received 18 Nov 2023, Accepted 25 Mar 2024, Published online: 16 Apr 2024

References

  • Hirose S. Snake-like locomotors and manipulators. Biologically Inspired Robots. 1993.
  • Kelasidi E, Pettersen KY, Gravdahl JT, et al. Modeling of underwater snake robots. In: 2014 IEEE International Conference on Robotics and Automation (ICRA); IEEE; 2014. p. 4540–4547.
  • Boyer F, Porez M, Khalil W. Macro-continuous computed torque algorithm for a three-dimensional eel-like robot. IEEE Trans Robot. 2006;22(4):763–775. doi: 10.1109/TRO.2006.875492
  • Khalil W, Gallot G, Boyer F. Dynamic modeling and simulation of a 3-d serial EEL-like robot. IEEE Trans Syst, Man, Cyber, Part C (Appl Rev). 2007;37(6):1259–1268. doi: 10.1109/TSMCC.2007.905831
  • Liljebäck P, Pettersen KY, Stavdahl Ø, et al. Snake robots: modelling, mechatronics, and control. London: Springer; 2013.
  • Pettersen KY. Snake robots. Annu Rev Control. 2017;44:19–44. doi: 10.1016/j.arcontrol.2017.09.006
  • Liu J, Tong Y, Liu J. Review of snake robots in constrained environments. Rob Auton Syst. 2021;141:103785. doi: 10.1016/j.robot.2021.103785
  • Liljeback P, Pettersen KY, Stavdahl Ø, et al. Hybrid modelling and control of obstacle-aided snake robot locomotion. IEEE Trans Robot. 2010;26(5):781–799. doi: 10.1109/TRO.2010.2056211
  • Kelasidi E, Pettersen KY, Gravdahl JT, et al. Modeling and propulsion methods of underwater snake robots. In: 2017 IEEE Conference on Control Technology and Applications (CCTA); IEEE; 2017. p. 819–826.
  • Kano T, Ishiguro A. Obstacles are beneficial to me! Scaffold-based locomotion of a snake-like robot using decentralized control. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; IEEE; 2013. p. 3273–3278.
  • Inazawa M, Takemori T, Tanaka M, et al. Motion design for a snake robot negotiating complicated pipe structures of a constant diameter. In: 2020 IEEE International Conference on Robotics and Automation (ICRA); IEEE; 2020. p. 8073–8079.
  • Hirose S, Umetani Y. Kinematic control of active cord mechanism with tactile sensors. Trans Soc Instru Control Eng. 1976;12(5):543–547. doi: 10.9746/sicetr1965.12.543
  • Nakajima M, Tanaka M, Tanaka K, et al. Motion control of a snake robot moving between two non-parallel planes. Adv Robot. 2018;32(10):559–573. doi: 10.1080/01691864.2018.1458653
  • Barazandeh F, Bahr B, Moradi A. How self-locking reduces actuators torque in climbing snake robots. In: 2007 IEEE/ASME international conference on advanced intelligent mechatronics; IEEE; 2007. p. 1–6.
  • Shapiro A, Greenfield A, Choset H. Frictional compliance model development and experiments for snake robot climbing. In: Proceedings 2007 IEEE International Conference on Robotics and Automation; IEEE; 2007. p. 574–579.
  • Kuwada A, Wakimoto S, Suzumori K, et al. Automatic pipe negotiation control for snake-like robot. In: 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics; IEEE; 2008. p. 558–563.
  • Virgala I, Kelemen M, Prada E, et al. A snake robot for locomotion in a pipe using trapezium-like travelling wave. Mech Mach Theory. 2021;158:104221. doi: 10.1016/j.mechmachtheory.2020.104221
  • Kelasidi E, Liljeback P, Pettersen KY, et al. Innovation in underwater robots: biologically inspired swimming snake robots. IEEE Robot Automat Magaz. 2016;23(1):44–62. doi: 10.1109/MRA.2015.2506121
  • Nonhoff M, Köhler PN, Kohl AM, et al. Economic model predictive control for snake robot locomotion. In: 2019 IEEE 58th Conference on Decision and Control (CDC); IEEE; 2019. p. 8329–8334.
  • Müller E, Köhler PN, Pettersen KY, et al. Economic model predictive control for obstacle-aided snake robot locomotion. IFAC-PapersOnLine. 2020;53(2):9702–9708. doi: 10.1016/j.ifacol.2020.12.2622
  • Qiu Y, Date H. Obstacle-aided locomotion for underwater snake robot using monte carlo model predictive control and curvature derivative control. In: 2023 62nd Annual Conference of the Society of Instrument and Control Engineers (SICE); IEEE; 2023. p. 690–695.
  • Jordan CE. Coupling internal and external mechanics to predict swimming behavior: a general approach. Am Zool. 1996;36(6):710–722. doi: 10.1093/icb/36.6.710
  • Ohyama S, Date H. Parallelized nonlinear model predictive control on gpu. In: 2017 11th Asian Control Conference (ASCC); IEEE; 2017. p. 1620–1625.
  • Nakatani S, Date H. Swing up control of inverted pendulum on a cart with collision by monte carlo model predictive control. In: 2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE); IEEE; 2019. p. 1050–1055.
  • Kato M, Date H, Nakatani S, et al. Control of quadcopter considering collision with wall utilizing monte carlo model predictive control. Trans Soc Instrum Control Eng. 2021;57(9):379–390. doi: 10.9746/sicetr.57.379
  • Ando H, Nakatani S, Date H. Trajectory generation of center of mass for biped robot by monte carlo model predictive control considering upper body contact with walls and constraints of zmp. Trans Soc Instru Control Eng. 2023;59(3):162–175. doi: 10.9746/sicetr.59.162
  • Pincus M. -A closed form solution of certain programming problems. Oper Res. 1968;16(3):690–694. doi: 10.1287/opre.16.3.690
  • Date H, Takita Y. Control of 3d snake-like locomotive mechanism based on continuum modeling. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; Vol. 47438; 2005. p. 1351–1359.
  • Date H, Takita Y. Adaptive locomotion of a snake like robot based on curvature derivatives. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems; IEEE; 2007. p. 3554–3559.
  • Kano T, Yoshizawa R, Ishiguro A. Tegotae-based decentralised control scheme for autonomous Gait transition of snake-like robots. Bioinspir Biomim. 2017;12(4):046009. doi: 10.1088/1748-3190/aa7725