2,626
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Developing algebraic reasoning in primary school using a hanging mobile as a learning supportive tool / El desarrollo del razonamiento algebraico en educación primaria utilizando una balanza como herramienta de apoyo

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 615-663 | Received 20 Apr 2018, Accepted 24 Apr 2019, Published online: 25 Jul 2019

References / Referencias

  • Abrahamson, D. (2017). Embodiment and mathematics learning. In K. Peppler (Ed.), The SAGE encyclopedia of out-of-school learning (pp. 247–252). Thousand Oaks, CA: SAGE Publications.
  • Alibali, M. W., Knuth, E. J., Hattikudur, S., McNeil, N. M., & Stephens, A. C. (2007). A longitudinal look at middle-school students’ understanding of the equal sign and equivalent equations. Mathematical Thinking and Learning, 9, 221–247.
  • Araya, R., Calfucura, P., Jiménez, A., Aguirre, C., Palavicino, M. A., Lacourly, N., … Dartnell, P. (2010). The effect of analogies on learning to solve algebraic equations. Pedagogies: An International Journal, 5, 216–232.
  • Arcavi, A., Drijvers, P., & Stacey, K. (2016). The learning and teaching of algebra: Ideas, insights and activities. London: Routledge.
  • Behr, M., Erlwanger, S., & Nichols, E. (1980). How children view the equals sign. Mathematics Teaching, 92, 13–15.
  • Blanton, M., Schifter, D., Inge, V., Lofgren, P., Willis, C., Davis, F., & Confrey, J. (2007). Early algebra. In V. J. Katz (Ed.), Algebra: Gateway to a technological future (pp. 7–15). Washington, DC: The Mathematical Association of America.
  • Blanton, M., Stephens, A., Knuth, E., Gardiner, A. M., Isler, I., & Kim, J. S. (2015). The development of children’s algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46, 39–87.
  • Bush, S. B., & Karp, K. S. (2013). Prerequisite algebra skills and associated misconceptions of middle grade students: A review. The Journal of Mathematical Behavior, 32, 613–632.
  • Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Educational Psychology, 105, 380.
  • Carpenter, T. P., Franke, M. L., & Levi, L. (2003). Thinking mathematically: Integrating arithmetic and algebra in elementary school. Portsmouth, NH: Heineman.
  • Carraher, D., & Schliemann, A. D. (2014). Early algebra teaching and learning. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 193–196). Dordrecht: Springer. doi:10.1007/978-94-007-4978-8_5
  • Carraher, D. W., Schliemann, A. D., & Schwartz, J. (2008). Early algebra is not the same as algebra early. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 235–272). Mahwah, NJ: Lawrence Erlbaum/Taylor & Francis Group; Reston, VA: National Council of Teachers of Mathematics.
  • Cooper, T. J., & Warren, E. (2008). The effect of different representations on Years 3 to 5 students’ ability to generalise. ZDM, 40, 23–37.
  • Figueira-Sampaio, A. S., Santos, E. E. F., & Carrijo, G. A. (2009). A constructivist computational tool to assist in learning primary school mathematical equations. Computers & Education, 53, 484–492.
  • Filloy, E., & Rojano, T. (1989). Solving equations: The transition from arithmetic to algebra. For the Learning of Mathematics, 9(2), 19–25.
  • Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science instruction: A systematic review. Educational Psychology Review, 26, 9–25.
  • Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455–479.
  • Gibbs Jr, R. W. (2006). Embodiment and cognitive science. New York, NY: Cambridge University Press.
  • Glaser, B. G. (1965). The constant comparative method of qualitative analysis. Social Problems, 12, 436–445.
  • Herscovics, N., & Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics, 27, 59–78.
  • Kaput, J. J. (2008). What is algebra? What is algebraic reasoning. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 5–17). Mahwah, NJ: Lawrence Erlbaum/Taylor & Francis Group; Reston, VA: National Council of Teachers of Mathematics.
  • Kaput, J. J., Carraher, D. W., & Blanton, M. L. (2008). Algebra in the early grades. New York, NY: Lawrence Erlbaum Associates.
  • Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.
  • Kieran, C. (1997). Mathematical concepts at the secondary school level: The learning of algebra and functions. In T. Nunes, & P. Bryant (Eds.), Learning and teaching mathematics: An international perspective (pp. 133–158). East Sussex, UK: Psychology Press.
  • Kieran, C., Pang, J., Schifter, D., & Ng, S. F. (2016). Early algebra: Research into its nature, its learning, its teaching. New York, NY: Springer (open access eBook). doi:10.1007/978-3-319-32258-2
  • Knuth, E. J., Alibali, M. W., McNeil, N. M., Weinberg, A., & Stephens, A. C. (2005). Middle school students‘ understanding of core algebraic concepts: Equivalence & variable. ZDM, 37, 68–76.
  • Knuth, E. J., Stephens, A. C., McNeil, N. M., & Alibali, M. W. (2006). Does understanding the equal sign matter? Evidence from solving equations. Journal for Research in Mathematics Education, 37, 297–312.
  • Koedinger, K. R., & Nathan, M. J. (2004). The real story behind story problems: Effects of representations on quantitative reasoning. The Journal of the Learning Sciences, 13, 129–164.
  • Lakoff, G., & Johnson, M. (1980). Conceptual metaphor in everyday language. The Journal of Philosophy, 77, 453–486.
  • Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic books.
  • Leibniz, G. W. (1989). To queen Sophie Charlotte of Prussia, on what is independent of sense and matter (1702). In R. Ariew, & D. Garber (Eds., Trans.), Philosophical essays (pp. 186–192). Indianapolis, IN: Hackett Publishing Company.
  • Li, X., Ding, M., Capraro, M. M., & Capraro, R. M. (2008). Sources of differences in children’s understandings of mathematical equality: Comparative analysis of teacher guides and student texts in China and the United States. Cognition and Instruction, 26, 195–217.
  • Linchevski, L., & Herscovics, N. (1996). Crossing the cognitive gap between arithmetic and algebra: Operating on the unknown in the context of equations. Educational Studies in Mathematics, 30, 39–65.
  • Matthews, P., Rittle-Johnson, B., McEldoon, K., & Taylor, R. (2012). Measure for measure: What combining diverse measures reveals about children’s understanding of the equal sign as an indicator of mathematical equality. Journal for Research in Mathematics Education, 43, 316–350.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  • Ngu, B. H., & Phan, H. P. (2016). Comparing balance and inverse methods on learning conceptual and procedural knowledge in equation solving: A cognitive load perspective. Pedagogies: An International Journal, 11, 63–83.
  • Núñez, R. E., Edwards, L. D., & Matos, J. F. (1999). Embodied cognition as grounding for situatedness and context in mathematics education. Educational Studies in Mathematics, 39, 45–65.
  • Otten, M., Van Den Heuvel-Panhuizen, M., & Veldhuis, M. (2019). The balance model for teaching linear equations: A literature review. Manuscript submitted for publication.
  • Perry, M., Berch, D., & Singleton, J. (1995). Constructing shared understanding: The role of nonverbal input in learning contexts. Journal of Contemporary Legal Issues, 6, 213–235. Retrieved from http://heinonline.org/HOL/Page?handle=hein.journals/contli6&div=14&g_sent=1&casa_token=lB1QPO7tHvMAAAAA:tm46P4ljNPW_1Y7w-ZEQf50oJ8FjP-cJj2aw9Td9ppqiUv-bN74-NS1yWW6Gpsk8w8ZGUe8W&collection=journals
  • Piaget, J., & Inhelder, B. (1967). The child’s conception of space. New York, NY: W. W. Norton.
  • Pouw, W. T., Van Gog, T., & Paas, F. (2014). An embedded and embodied cognition review of instructional manipulatives. Educational Psychology Review, 26, 51–72.
  • Stacey, K., & MacGregor, M. (1999). Learning the algebraic method of solving problems. The Journal of Mathematical Behavior, 18, 149–167.
  • Stephens, A. C., Fonger, N., Strachota, S., Isler, I., Blanton, M., Knuth, E., & Gardiner, A. (2017). A learning progression for elementary students’ functional thinking. Mathematical Thinking and Learning, 19, 143–166.
  • Suh, J., & Moyer, P. S. (2007). Developing students‘ representational fluency using virtual and physical algebra balances. The Journal of Computers in Mathematics and Science Teaching, 26, 155–173. Retrieved from https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1031&context=teal_facpub
  • Van Amerom, B. A. (2002). Reinvention early algebra. Developmental research on the transition from arithmetic to algebra. Utrecht: CD-ß Press/Freudenthal Institute.
  • Van Den Heuvel-Panhuizen, M., & Drijvers, P. (2014). Realistic mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 521–525). Dordrecht: Springer. doi:10.1007/978-94-007-4978-8_170
  • Van Reeuwijk, M. (1995, April). The role of realistic situations in developing tools for solving systems of equations. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA.
  • Vlassis, J. (2002). The balance model: Hindrance or support for the solving of linear equations with one unknown. Educational Studies in Mathematics, 49, 341–359.
  • Warren, E., & Cooper, T. J. (2005). Young children’s ability to use the balance strategy to solve for unknowns. Mathematics Education Research Journal, 17, 58–72.
  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9, 625–636.