2,613
Views
42
CrossRef citations to date
0
Altmetric
Articles

Encouraging a career in science: a research review of secondary schools’ effects on students’ STEM orientation

, &

References

  • Adams, C. M. (2014). Collective student trust: A social resource for urban elementary students. Educational Administration Quarterly, 50(1), 1–25. doi:10.1177/0013161X13488596
  • Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., & Wong, B. (2012). Science aspirations, capital, and family habitus: How families shape children’s engagement and identification with science. American Educational Research Journal, 49(5), 881–908. doi:10.3102/0002831211433290
  • Archer, L., DeWitt, J., & Wong, B. (2014). Spheres of influence: What shapes young people’s aspirations at age 12/13 and what are the implications for education policy? Journal of Education Policy, 29(1), 58–85. doi:10.1080/02680939.2013.790079
  • Archer, L., DeWitt, J., & Osborne, J. (2015). Is science for us? Black students’ and parents’ views of science and science careers. Science Education, 99(2), 199–237. doi:10.1002/sce.21146
  • Ardies, J., De Maeyer, S., & Gijbels, D. (2015). A longitudinal study on boys’ and girls’ career aspirations and interest in technology. Research in Science & Technological Education, 33(3), 366–386. doi:10.1080/02635143.2015.1060412
  • Areepattamannil, S., & Kaur, B. (2013). Factors predicting science achievement of immigrant and non-immigrant students: A multilevel analysis. International Journal of Science and Mathematics Education, 11(5), 1183–1207. doi:10.1007/s10763-012-9369-5
  • Basl, J. (2011). Effect of school on interest in natural sciences. International Journal of Science Education, 33(1), 145–157. doi:10.1080/09500693.2011.518641
  • Bennett, J., Lubben, F., & Hampden-Thompson, G. (2013). Schools that make a difference to post-compulsory uptake of physical science subjects: Some comparative case studies in England. International Journal of Science Education, 35(4), 663–689. doi:10.1080/09500693.2011.641131
  • Blustein, D. L., Barnett, M., Mark, S., Depot, M., Lovering, M., Lee, Y., … DeBay, D. (2013). Examining urban students’ constructions of a stem/career development intervention over time. Journal of Career Development, 40(1), 40–67. doi:10.1177/0894845312441680
  • Boaler, J., & Staples, M. (2008). Creating mathematical futures through an equitable teaching approach: The case of railside school. Teachers College Record, 110(3), 608–645.
  • Bottia, M. C., Stearns, E., Mickelson, R. A., Moller, S., & Parker, A. D. (2015). The relationships among high school STEM learning experiences and students’ intent to declare and declaration of a STEM major in college. Teachers College Record, 117(3), 1549–1572.
  • Bystydzienski, J. M., Eisenhart, M., & Bruning, M. (2015). High school is not too late: Developing girls’ interest and engagement in engineering careers. Career Development Quarterly, 63(1), 88–95. doi:10.1002/j.2161-0045.2015.00097.x
  • Cleaves, A. (2005). The formation of science choices in secondary school. International Journal of Science Education, 27(4), 471–486. doi:10.1080/0950069042000323746
  • Cooper, H., & Hedges, L. V. (2009). Introduction. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (pp. 3–18). New York, NY: Russell Sage Foundation.
  • Crosnoe, R., Lopez-Gonzalez, L., & Muller, C. (2004). Immigration from Mexico into the math/science pipeline in American education. Social Science Quarterly, 85(5), 1208–1226. doi:10.1111/j.0038-4941.2004.00272.x
  • Dabney, K. P., Tai, R. H., Almarode, J. T., Miller-Friedmann, J. L., Sonnert, G., Sadler, P. M., & Hazari, Z. (2012). Out-of-school time science activities and their association with career interest in STEM. International Journal of Science Education, 2(1), 63–79. doi:10.1080/21548455.2011.629455
  • DeWitt, J., Osborne, J., Archer, L., Dillon, J., Willis, B., & Wong, B. (2013). Young Children’s Aspirations in Science: The unequivocal, the uncertain and the unthinkable. International Journal of Science Education, 35(6), 1037–1063. doi:10.1080/09500693.2011.608197
  • Engberg, M. E., & Wolniak, G. C. (2013). College student pathways to the STEM disciplines. Teachers College Record, 115(1), 1–27.
  • European Centre for the Development of Vocational Training (2016). Skill shortage and surplus occupations in Europe: Cedefop insights into which occupations are in high demand - and why. Thessaloniki, Greece: Cedefop.
  • Fouad, N. A., Hackett, G., Smith, P. L., Kantamneni, N., Fitzpatrick, M., Haag, S., & Spencer, D. (2010). Barriers and supports for continuing in mathematics and science: Gender and educational level differences. Journal of Vocational Behavior, 77(3), 361–373. doi:10.1016/j.jvb.2010.06.004
  • Francis, B., Hutchings, M., Archer, L., & Amelling, L. (2003). Subject choice and occupational aspirations among pupils at girls' schools. Pedagogy, Culture and Society, 11(3), 425–442. doi:10.1080/14681360300200182
  • Frenzel, A. C., Goetz, T., Pekrun, R., & Watt, H. M. G. (2010). Development of mathematics interest in adolescence: Influences of gender, family, and school context. Journal of Research on Adolescence, 20(2), 507–537. doi:10.1111/j.1532-7795.2010.00645.x
  • Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching: A meta-analysis. Review of Educational Research, 82(3), 300–329. doi:10.3102/0034654312457206
  • Gilmartin, S., Denson, N., Li, E., Bryant, A., & Aschbacher, P. (2007). Gender ratios in high school science departments: The effect of percent female faculty on multiple dimensions of students’ science identities. Journal of Research in Science Teaching, 44(7), 980–1009. doi:10.1002/tea.20179
  • Gottfried, A. E., Fleming, J. S., & Gottfried, A. W. (2001). Continuity of academic intrinsic motivation from childhood through late adolescence: A longitudinal study. Journal of Educational Psychology, 93(1), 3–13. doi:10.1037//0022-0663.93.1.3
  • Hampden-Thompson, G., & Bennett, J. (2013). Science teaching and learning activities and students’ engagement in science. International Journal of Science Education, 35(8), 1325–1343. doi:10.1080/09500693.2011.608093
  • Heckhausen, H., & Gollwitzer, P. M. (1987). Thought contents and cognitive functioning in motivational versus volitional states of mind. Motivation and Emotion, 11(2), 101–120. doi:10.1007/BF00992338
  • Heckhausen, J., & Heckhausen, H. (2010). Motivation und Handeln (4th ed.). Berlin: Springer.10.1007/978-3-642-12693-2
  • Hogrebe, M. C., & Tate, W. F. (2010). School composition and context factors that moderate and predict 10th-grade science proficiency. Teachers College Record, 112(4), 1096–1136.
  • Kasperzack, D., Ernst, A. L., & Pinquart, M. (2014). Ambivalence during and after career decision making of high school graduates. Journal of Career Assessment, 22(2), 248–260. doi:10.1177/1069072713493765
  • Knezek, G., Christensen, R., Tyler-Wood, T., & Periathiruvadi, S. (2013). Impact of environmental power monitoring activities on middle school student perceptions of STEM. Science Education International, 24(1), 98–123.
  • Kovarik, D. N., Patterson, D. G., Cohen, C., Sanders, E. A., Peterson, K. A., Porter, S. G., & Chowning, J. T. (2013). Bioinformatics education in high school: Implications for promoting science, technology, engineering, and mathematics careers. CBE - Life Sciences Education, 12(3), 441–459. doi:10.1187/cbe.12-11-0193
  • Kyriakides, L., Creemers, B., Antoniou, P., & Demetriou, D. (2010). A synthesis of studies searching for school factors: Implications for theory and research. British Educational Research Journal, 36(5), 807–830. doi:10.1080/01411920903165603
  • Kyttala, M., & Bjorn, P. M. (2010). Prior mathematics achievement, cognitive appraisals and anxiety as predictors of Finnish students’ later mathematics performance and career orientation. Educational Psychology, 30(4), 431–448. doi:10.1080/01443411003724491
  • LeBeau, B., Harwell, M., Monson, D., Dupuis, D., Medhanie, A., & Post, T. R. (2012). Student and high-school characteristics related to completing a science, technology, engineering or mathematics (STEM) major in college. Research in Science & Technological Education, 30(1), 17–28. doi:10.1080/02635143.2012.659178
  • Lee, S. W., Min, S., & Mamerow, G. P. (2015). Pygmalion in the classroom and the home: Expectation’s role in the pipeline to STEMM. Teachers College Record, 117(9), 1–40.
  • Legewie, J., & DiPrete, T. A. (2014). The high school environment and the gender gap in science and engineering. Sociology of Education, 87(4), 259–280. doi:10.1177/0038040714547770
  • Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of Vocational Behavior, 45(1), 79–122. doi:10.1006/jvbe.1994.1027
  • Lent, R. W., Brown, S. D., Schmidt, J., Brenner, B., Lyons, H., & Treistman, D. (2003). Relation of contextual supports and barriers to choice behavior in engineering majors: Test of alternative social cognitive models. Journal of Counseling Psychology, 50(4), 458–465. doi:10.1037/0022-0167.50.4.458
  • Lichtenberger, E., & George-Jackson, C. (2013). Predicting high school students’ interest in majoring in a STEM Field: Insight into high school students’ Postsecondary Plans. Journal of Career and Technical Education, 28(1), 19–38. doi:10.21061/jcte.v28i1.571
  • Mann, A., Legewie, J., & DiPrete, T. A. (2015). The role of school performance in narrowing gender gaps in the formation of STEM aspirations: A cross-national study. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00171
  • Martin, A. J., Anderson, J., Bobis, J., Way, J., & Vellar, R. (2012). Switching on and switching off in mathematics: An ecological study of future intent and disengagement among middle school students. Journal of Educational Psychology, 104(1), 1–18. doi:10.1037/a0025988
  • Matt, G. E., & Cook, T. D. (2009). Threats to the validity of generalized inferences. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (pp. 537–560). New York, NY: Russell Sage Foundation.
  • Nagengast, B., & Marsh, H. W. (2012). Big fish in little ponds aspire more: Mediation and cross-cultural generalizability of school-average ability effects on self-concept and career aspirations in science. Journal of Educational Psychology, 104(4), 1033–1053. doi:10.1037/a0027697
  • National Science Board. (2015). Revisiting the STEM workforce: A companion to science and engineering indicators 2014 (NSB-2015-10). Arlington, VA: National Science Foundation.
  • Newman, M., Garrett, Z., Elbourne, D., Bradley, S., Noden, P., Taylor, J., & West, A. (2006). Does secondary school size make a difference? Educational Research Review, 1(1), 41–60.10.1016/j.edurev.2006.03.001
  • Nugent, G., Barker, B., Welch, G., Grandgenett, N., Wu, C., & Nelson, C. (2015). A model of factors contributing to STEM learning and career orientation. International Journal of Science Education, 37(7), 1067–1088. doi:10.1080/09500693.2015.1017863
  • OECD. (2015). How is the global talent pool changing (2013, 2030)? Education Indicators in Focus, No. 31. Paris: Author.
  • Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079. doi:10.1080/0950069032000032199
  • Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences: A practical guide. Malden: Blackwell.10.1002/9780470754887
  • Polanin, J. R., Maynard, B. R., & Dell, N. A. (2017). Overviews in education research: A systematic review and analysis. Review of Educational Research., 87(1), 172–203. doi:10.3102/0034654316631117
  • Sahin, A. (2013). STEM Clubs and science fair competitions: Effects on post-secondary matriculation. Journal of STEM Education: Innovations and Research, 14(1), 5–11.
  • Salto, L. M., Riggs, M. L., de Leon, D. D., Casiano, C. A., & de Leon, M. (2014). Underrepresented minority high school and college students report STEM-Pipeline sustaining gains after participating in the Loma Linda University Summer Health Disparities Research Program. PLOS ONE, 9(9), e108497. doi:10.1371/journal.pone.0108497
  • Savelsbergh, E. R., Prins, G. T., Rietbergen, C., Fechner, S., Vaessen, B. E., Draijer, J. M., & Bakker, A. (2016). Effects of innovative science and mathematics teaching on student attitudes and achievement: A meta-analytic study. Educational Research Review, 19, 158–172.10.1016/j.edurev.2016.07.003
  • Scheerens, J. (1990). School effectiveness research and the development of process indicators of school functioning. School Effectiveness and School Improvement, 1(1), 61–80. doi:10.1080/0924345900010106
  • Scheerens, J. (2015). Theories on educational effectiveness and ineffectiveness. School Effectiveness and School Improvement, 26(1), 10–31. doi:10.1080/09243453.2013.858754
  • Schoon, I. (2001). Teenage job aspirations and career attainment in adulthood: A 17-year follow-up study of teenagers who aspired to become scientists, health professionals, or engineers. International Journal of Behavioral Development, 25(2), 124–132. doi:10.1080/01650250042000186
  • Seidel, T., & Shavelson, R. J. (2007). Teaching effectiveness research in the past decade: The role of theory and research design in disentangling meta-analysis results. Review of Educational Research, 77(4), 454–499. doi:10.3102/0034654307310317
  • Shane, J., Heckhausen, J., Lessard, J., Chen, C., & Greenberger, E. (2012). Career-related goal pursuit among post-high school youth: Relations between personal control beliefs and control strivings. Motivation and Emotion, 36(2), 159–169. doi:10.1007/s11031-011-9245-6
  • Singh, K., Allen, K. R., Scheckler, R., & Darlington, L. (2007). Women in computer-related majors: A critical synthesis of research and theory from 1994 to 2005. Review of Educational Research, 77(4), 500–533. doi:10.3102/0034654307309919
  • Tai, R. H., Qi Liu, C., Maltese, A. V., & Fan, X. (2006). Career choice. Planning early for careers in science. Science, 312(5777), 1143–1144. doi:10.1126/science.1128690
  • Taskinen, P. H., Schütte, K., & Prenzel, M. (2013). Adolescents’ motivation to select an academic science-related career: The role of school factors, individual interest, and science self-concept. Educational Research and Evaluation, 19(8), 717–733. doi:10.1080/13803611.2013.853620
  • Ting, S. R., Leung, Y. F., Stewart, K., Smith, A. C., Roberts, G. L., & Dees, S. (2012). A preliminary study of career education in middle school. Journal of Career and Technical Education, 27(2), 84–97. doi:10.21061/jcte.v27i2.562
  • Trusty, J. (2002). Effects of high school course-taking and other variables on choice of science and mathematics college majors. Journal of Counseling and Development, 80(4), 464–474. doi:10.1002/j.1556-6678.2002.tb00213.x
  • van Langen, A., & Dekkers, H. (2005). Cross-national differences in participating in tertiary science, technology, engineering, and mathematics education. Comparative Education, 41(3), 329–350. doi:10.1080/03050060500211708
  • van Tuijl, C., & van der Molen, J. H. W. (2016). Study choice and career development in STEM fields: An overview and integration of the research. International Journal of Technology and Design Education, 26(2), 159–183. doi:10.1007/s10798-015-9308-1
  • Uitto, A. (2014). Interest, attitudes and self-efficacy beliefs explaining upper-secondary school students’ orientation towards biology-related careers. International Journal of Science and Mathematics Education, 12(6), 1425–1444. doi:10.1007/s10763-014-9516-2
  • Yazilitas, D., Svensson, J., de Vries, G., & Saharso, S. (2013). Gendered study choice: A literature review. A review of theory and research into unequal representation of male and female students in mathematics, science, and technology. Educational Research and Evaluation, 19(6), 525–545. doi:10.1080/13803611.2013.803931

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.