7,912
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Learners’ challenges in understanding and performing experiments: a systematic review of the literature

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H.-L. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397–419. https://doi.org/10.1002/sce.10118
  • Abels, S. (2015). Scaffolding inquiry-based science and chemistry education in inclusive classrooms. In N. L. Yates (Ed.), New developments in science education research (pp. 77–96). Nova Science Publishers.
  • Abrams, E., Southerland, S. A., & Evans, C. A. (2008). Introduction: Inquiry in the Classroom: Identifying necessary components of a useful definition. In E. Abrams, S. A. Southerland, & P. C. Silva (Eds.), Inquiry in the Classroom: Realities and opportunities (pp. xi–xlii). Information Age Publishing, Inc.
  • Adams, J. D., Avraamidou, L., Bayram-Jacobs, D., Boujaoude, S., Bryan, L., Christodoulou, A., & Zembal-Saul, C. (2018). The role of science education in a changing world. Technical Report. Lorentz Centre.
  • Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1–18. https://doi.org/10.1037/a0021017
  • Amsel, E., & Brock, S. (1996). The development of evidence evaluation skills. Cognitive Development, 11, 523–550. https://doi.org/10.1016/S0885-2014(96)90016-7
  • Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1–12 doi:https://doi.org/10.1023/A:1015171124982.
  • Aoki, T. (1991). The relation between two kinds of U-shaped growth curves: Balance-scale and weight-addition tasks. The Journal of General Psychology, 118, 251–261. https://doi.org/10.1080/00221309.1991.9917784
  • Arnold, J., Boone, W., Kremer, K., & Mayer, J. (2018). Assessment of competencies in scientific inquiry through the application of rasch measurement techniques. Education Sciences, 8(4). https://doi.org/10.3390/educsci8040184
  • Arnold, J., Kremer, K., & Mayer, J. (2014). Understanding students’ experiments—What kind of support do they need in inquiry tasks? International Journal of Science Education, 36(16), 2719–2749. https://doi.org/10.1080/09500693.2014.930209
  • Baur, A. (2015). Inwieweit eignen sich bisherige Diagnoseverfahren des Bereichs Experimentieren für die Schulpraxis? [To what extent are previous diagnostic procedures in the field of experimentation suitable for school practice?. Zeitschrift für Didaktik der Biologie - Biologie Lehren und Lernen, 19, 1.
  • Baur, A. (2018). Fehler, Fehlkonzepte und spezifische Vorgehensweisen von Schülerinnen und Schülern beim Experimentieren [Students' errors, misconceptions and specific approaches during experimentation. 24, 115–129. https://doi.org/10.1007/s40573-018-0078-7
  • Baur, A. (2021). Errors made by 5th-, 6th-, and 9th-graders when planning and performing experiments: Results of video-based comparisons. Zeitschrift für Didaktik Der Biologie (ZDB) - Biologie Lehren Und Lernen, 25, 45–63. https://doi.org/10.11576/zdb-3576
  • Baur, A. (2021). Errors made by 5th-, 6th-, and 9th-graders when planning and performing experiments: Results of video-based comparisons. Zeitschrift für Didaktik Der Biologie (ZDB) - Biologie Lehren Und Lernen, 25, 45–63. https://archiv.ipn.uni-kiel.de/zfdn/pdf/003_12.pdf
  • Baur, A., & Emden, M. (2020). How to open inquiry teaching? An alternative teaching scaffold to foster students’ inquiry skills. Chemistry Teacher International, 3, 1. https://doi.org/10.1515/cti-2019-0013
  • Bell, R. L., Smetana, L., & Binns, I. (2005). Simplifying inquiry instruction. Science Teacher, 72(7), 30–33.
  • Blanchard, M. R., Southerland, S. A., Osborne, J. W., Sampson, V. D., Annetta, L. A., & Granger, E. M. (2010). Is inquiry possible in light of accountability? A quantitative comparison of the relative effectiveness of guided inquiry and verification laboratory instruction. Science Education, 94(4), 577–616. https://doi.org/10.1002/sce.20390
  • Boaventura, D., Faria, C., Chagas, I., & Galvão, C. (2013). Promoting science outdoor activities for elementary school children: Contributions from a research laboratory. International Journal of Science Education, 35(5), 796–814. https://doi.org/10.1080/09500693.2011.583292
  • Bruckermann, T., Arnold, J., Kremer, K., & Schlüter, K. (2017). Forschendes Lernen in der Biologie. In T. Bruckermann & K. Schlüter (Eds.), Forschendes Lernen im Experimentalpraktikum Biologie [Inquiry-based learning in experimental biology]. Berlin, Heidelberg: Springer Spektrum. doi:10.1007/978-3-662-53308-6_2
  • Bybee, R. W. (1997). Toward an understanding of scientific literacy. In W. Gräber & C. Bolte (Eds.), Scientific literacy. An international Symposium (pp. 37–68). IPN.
  • Bybee, R. W. (2006). Teaching science as inquiry. In J. Minstrell & E. H. van Zee (Eds.), Inquiring into inquiry learning and teaching in science (pp. 21–46). American Association for the Advancement of Science.
  • Bybee, R. W., Taylor, J. A., Gardner, A., van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. BSCS. http://bscs.org/sites/default/files/_media/about/downloads/BSCS_5E_Full_Report.pdf
  • Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). An experiment is when you try it and see if it works’: A study of grade 7 students’ understanding of the construction of scientific knowledge. International Journal of Science Education, 11, 514–529. https://doi.org/10.1080/0950069890110504
  • Chang, H. P., Chen, C. C., Guo, G. J., Cheng, Y.-J., Lin, C., & Jen, T. (2011). The development of a competence scale for learning science: Inquiry and communication. International Journal of Science and Mathematics Education, 9, 1213–1233. http://dx.doi.org/10.1007/s10763-010-9256-x
  • Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of control of variables strategy. Child Development, 70(5), 1098–1120. https://doi.org/10.1111/1467-8624.00081
  • Chin, C., & Osborne, J. (2008). Students’ questions: A potential resource for teaching and learning science. Studies in Science Education, 44(1), 1–39. https://doi.org/10.1080/03057260701828101
  • Croker, S., & Buchanan, H. (2011). Scientific reasoning in a real-world context: The effect of prior belief and outcome on children’s hypothesis-testing strategies. The British Journal of Developmental Psychology, 29(3), 409–424. https://doi.org/10.1348/026151010X496906
  • Croner, P. (2003). Developing critical thinking skills through the use of guided laboratory activities. The Science Education Review, 2(2), 1–13. https://files.eric.ed.gov/fulltext/EJ1058493.pdf
  • Cuccio-Schirripa, S., & Steiner, H. E. (2000). Enhancement and analysis of science question level for middle school students. Journal of Research in Science Teaching, 37(2), 210–224. http://dx.doi.org/10.1002/(SICI)1098-2736(200002)37:2%3C210::AID-TEA7%3E3.0.CO;2-I
  • Darus, F. B., & Saat, R. M. (2014). How Do Primary School Students Acquire the Skill of Making Hypothesis? The Malaysian Online Journal of Educational Science, 2(2), 20–26. https://files.eric.ed.gov/fulltext/EJ1086198.pdf
  • Dasgupta, A. P., Anderson, T. R., & Pelaez, N. J. (2016). Development of the neuron assessment for measuring biology students’ use of experimental design concepts and representations. CBE Life Science Education, 15(2), 1–21. https://doi.org/10.1187/cbe.15-03-0077
  • de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179–201. https://doi.org/10.3102/00346543068002179
  • DfES & QCA/Department for Education and Skills/Qualification and Curriculum Authority. (2004). Science—the national curriculum for England. HMSO.
  • Duggan, S., & Gott, R. (2000). Intermediate general national vocational qualification (GNVQ) Science: A missed opportunity for a focus on procedural understanding? Research in Science & Technological Education, 18(2), 201–214. https://doi.org/10.1080/713694978
  • Dunbar, K. (1993). Concept discovery in a scientific domain. Cognitive Science, 17, 397–434. https://doi.org/10.1207/s15516709cog1703_3
  • Dunbar, K., & Klahr, D. (1989). Developmental differences in scientific discovery processes. In D. Klahr (Ed.), Complex information processing. The impact of Herbert A. Simon (pp. 109–143). Hillsdale, NJ: Erlbaum.
  • Durmaz, H., & Mutlu, S. (2017). The effect of an instructional intervention on elementary students’ science process skills. The Journal of Educational Research, 110(4), 433–445. https://doi.org/10.1080/00220671.2015.1118003
  • Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268–291. https://doi.org/10.3102/0091732X07309371
  • Eastwell, P. (2014). Understanding hypotheses, predictions, laws and theories. Science Education Review, 13(1), 16–21. https://files.eric.ed.gov/fulltext/EJ1057150.pdf
  • Echevarria, M. (2003). Anomalies as a catalyst for middle school students’ knowledge construction and scientific reasoning during science inquiry. Journal of Educational Psychology, 95(2), 357–374. https://doi.org/10.1037/0022-0663.95.2.357
  • Erdosne Toth, E., Klahr, D., & Chen, Z. (2000). Bridging research and practice: A cognitively based classroom intervention for teaching experimentation skills to elementary school children. Cognition and Instruction, 18(4), 423–459. http://dx.doi.org/10.1207/S1532690XCI1804_1
  • Fang, S.-C., Hsu, Y.-S., Chang, H.-Y., Chang, W.-H., Wu, H.-K., & Chen, C.-M. (2016). Investigating the effects of structured and guided inquiry on students’ development of conceptual knowledge and inquiry abilities: A case study in Taiwan. International Journal of Science Education, 38(12), 1945–1971. https://doi.org/10.1080/09500693.2016.1220688
  • Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching. Review of Educational Research, 82(3), 300–329. https://doi.org/10.3102/0034654312457206
  • García-Carmona, A., Criado, A. M., & Cruz-Guzmán, M. (2017). Primary pre-service teachers’ skills in planning a guided scientific inquiry. Research in Science Education, 47(5), 989–1010. https://doi.org/10.1007/s11165-016-9536-8
  • Garcia-Mila, M., & Andersen, C. (2007). Developmental change in notetaking during scientific inquiry. International Journal of Science Education, 29(8), 1035–1058. https://doi.org/10.1080/09500690600931103
  • Garcia-Mila, M., Andersen, C., & Rojo, N. E. (2011). Elementary students’ laboratory record keeping during scientific inquiry. International Journal of Science Education, 33(7), 915–942. https://doi.org/10.1080/09500693.2010.48098
  • Germann, P. J., Aram, R., & Burke, G. (1996). Identifying patterns and relationships among the responses of seventh-grade students to the science process skill of designing experiments. Journal of Research in Science Teaching, 33(1), 79–99. https://doi.org/10.1002/(SICI)1098-2736(199601)33:179::AID-TEA53.0.CO;2-M
  • Gijlers, H., & de Jong, T. (2005). The relation between prior knowledge and students’ collaborative discovery learning processes. Journal of Research in Science Teaching, 42(3), 264–282. https://doi.org/10.1002/tea.20056
  • Glazer, N. (2011). Challenges with graph interpretation: A review of the literature. Studies in Science Education, 47(2), 183–210. https://doi.org/10.1080/03057267.2011.605307
  • Gott, R., & Duggan, S. (1995). Investigative work in the science curriculum. Open University Press.
  • Gott, R., Duggan, S., & Roberts, R. (2008). Concepts of evidence and their role in open-ended practical investigations and scientific literacy. https://community.dur.ac.uk/rosalyn.roberts/Evidence/Gott%20&%20Roberts%20(2008)%20Research%20Report.pdf
  • Greenhoot, A. F., Semb, G., Colombo, J., & Schreiber, T. (2004). Prior beliefs and methodological concepts in scientific reasoning. Applied Cognitive Psychology, 18(2), 203–221. https://doi.org/10.1002/acp.959
  • Hammann, M., Phan, T. T. H., Ehmer, M., & Grimm, T. (2010). Assessing pupils’ skills in experimentation. Journal of Biological Education, 42(2), 66–72. https://doi.org/10.1080/00219266.2008.9656113
  • Harmon, M., Smith, T. A., Martin, M. O., Kelly, D. L., Beaton, A. E., Mullis, I. V. S., Gonzalez, E. J., & Orpwood, G. (1997). Performance assessment in IEA’s third international mathematics and science study (TIMMS). Center for the Study of Testing, Evaluation, and Educational Policy, Boston College. https://timss.bc.edu/timss1995i/TIMSSPDF/PAreport.pdf
  • Haury, D. L., ERIC, The Educational Resources Inforamtion Center. (1993). Teaching science through inquiry. ERIC/CSMEE Digest. http://files.eric.ed.gov/fulltext/ED359048.pdf
  • Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark. Educational Psychologist, 42(2), 99–107. https://doi.org/10.1080/00461520701263368
  • Hofstein, A., Navon, O., Kipnis, M., & Mamlok-Naaman, R. (2005). Developing students’ ability to ask more and better questions resulting from inquiry-type chemistry laboratories. Journal of Research in Science Teaching, 42(7), 791–806. https://doi.org/10.1002/tea.20072
  • Hofstein, A., Shore, R., & Kipnis, M. (2004). Providing high school chemistry students with opportunities to develop learning skills in an inquiry-type laboratory: A case study. International Journal of Science Education, 26(1), 47–62. https://doi.org/10.1080/0950069032000070342
  • Kanari, Z., & Millar, R. (2004). Reasoning from data: How students collect and interpret data in science investigations. Journal of Research in Science Teaching, 41, 748–769. https://doi.org/10.1002/tea.20020
  • Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multivariable causality. Journal of Research in Science Teaching, 40(9), 898–921. https://doi.org/10.1002/tea.10115
  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86. https://doi.org/10.1207/s15326985ep4102_1
  • Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12(1), 1–48. https://doi.org/10.1207/s15516709cog1201_1
  • Klahr, D., Fay, A., & Dunbar, K. (1993). Heuristics for scientific experimentation: A developmental study. Cognitive Psychology, 25, 111–146. https://doi.org/10.1006/cogp.1993.1003
  • Klahr, D., & Nigam, M. (2004). The equivalence of learning. Path in early science instruction. Psychological Science, 15(10), 661–667. https://doi.org/10.1002/tea.20152
  • Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical vs. virtual materials in an engineering design project by middle school students. Journal of Research in Science Teaching, 44, 183–203. https://doi.org/10.1002/tea.20152
  • Klayman, J., & Ha, Y.-W. (1989). Hypothesis testing in rule discovery: Strategy, structure, and content. Journal of Experimental Psychology. Learning, Memory, and Cognition, 15(4), 596–604. https://doi.org/10.1037/0278-7393.15.4.596
  • KMK/Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland. (2005a). Beschlüsse der Kultusministerkonferenz—Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss [decisions of the assembly of German Ministers of Education—Educational standards in biology for lower secondary school]. Luchterhand.
  • KMK/Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland. (2005b). Beschlüsse der Kultusministerkonferenz—Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss [decisions of the assembly of German Ministers of Education—Educational standards in chemistry for lower secondary school]. Luchterhand.
  • KMK/Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland. (2005c). Beschlüsse der Kultusministerkonferenz—Bildungsstandards im Fach Physik für den Mittleren Schulabschluss [decisions of the assembly of German Ministers of Education—Educational standards in physics for lower secondary school]. Luchterhand.
  • Kranz, J., Schwichow, M., Breitenmoser, P., & Niebert, K. (2022). The (Un)political Perspective on Climate Change in Education—A Systematic Review. Sustainability. https://doi.org/10.3390/su14074194
  • Kremer, K., Möller, A., Arnold, J., & Mayer, J. (2019). Kompetenzförderung beim Experimentieren [Promoting experimental competence]. In J. Groß, M. Hammann, P. Schmiemann, & J. Zabel (Eds.), Biologiedidaktische Forschung: Erträge für die Praxis (pp. 113–128). Springer Spektrum. https://doi.org/10.1007/978-3-662-58443-9_7.
  • Kremer, K., Specht, C., Urhahne, D., & Mayer, J. (2013). The relationship in biology between the nature of science and scientific inquiry. Journal of Biological Education, 48(1), 1–8. https://doi.org/10.1080/00219266.2013.788541
  • Kuhn, D. (2007). Reasoning about multiple variables: Control of variables is not the only challenge. Science Education, 91(5), 710–726. https://doi.org/10.1111/j.1467-9280.2005.01628
  • Kuhn, D., & Dean, D. Jr. (2005). Is developing scientific thinking all about learning to control variables? Psychological Science, 16, 866–870. https://doi.org/10.1111/j.1467-9280.2005.01628
  • Kuhn, D., Garcia-Mila, M., Zohar, A., Andersen, A., White, C., Sheldon, H., Klahr, D., Carver, D., & Sharon, M. (1995). Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development, 60, 1–128. https://doi.org/10.2307/1166059
  • Kuhn, D., Schauble, L., & Garcia-Mila, M. (1992). Cross-domain development of scientific reasoning. Cognition and Instruction, 9, 285–327. https://doi.org/10.1207/s1532690xci0904_1
  • Kwon, Y.-J., Jeong, J.-S., & Park, Y.-B. (2006). Roles of abductive reasoning and prior belief in children’s generation of hypotheses about pendulum motion. Science & Education, 15(6), 643–656. https://doi.org/10.1007/s11191-004-6407-x
  • Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 86(3), 681–718. https://doi.org/10.3102/0034654315627366
  • Lee, E. A., & Brown, M. J. (2018). Connecting inquiry and values in science education. Science & Education, 27(1–2), 63–79. https://doi.org/10.1007/s11191-017-9952-9
  • Littell, J. H., Corcoran, J., & Pillai, V. (2008). Systematic reviews and meta-analysis. Oxford University Press.
  • Ludwig, T., Priemer, B., & Lewalter, D. (2018). Decision-making in uncertainty-infused learning situations with experiments in physics classes. Looking back, looking forward. In M. A. Sorto, A. White, & L. Guyot (Eds.), Proceedings of the Tenth International Conference on Teaching Statistics, Kyoto, Japa, Voorburg, The Netherlands: International Statistical Institute.
  • Masnick, A. M., & Klahr, D. (2003). Error matters: An initial exploration of elementary school children’s understanding of experimental error. Journal of Cognition and Development, 4(1), 67–98. https://doi.org/10.1207/S15327647JCD4,1-03
  • Masnick, A. M., & Morris, B. J. (2008). Investigating the development of data evaluation: The role of data characteristics. Child Development, 79(4), 1032–1048. https://doi.org/10.1207/S15327647JCD4,1-03
  • Mayer, J. (2007). Erkenntnisgewinnung als wissenschaftliches Problemlösen [Inquiry as scientific problem-solving]. In D. Krüger & H. Vogt (Eds.), Theorien in der biologiedidaktischen Forschung (pp. 177–186). Springer. https://doi.org/10.1007/978-3-540-68166-3_16.
  • Mayer, J., Grube, C., & Möller, A. (2008). Kompetenzmodell naturwissenschaftlicher Erkenntnisgewinnung [Competence model of scientific inquiry]. In U. Harms & A. Sandmann (Eds.), Lehr- und Lernforschung in der Biologiedidaktik: Ausbildung und Professionalisierung von Lehrkräften (Vol. 3, pp. 63–79). StudienVerlag.
  • Mayer, J., & Ziemek, H.-P. (2006). Offenes experimentieren. Forschendes Lernen im Biologieunterricht [Open experimentation. Inquiry-based learning in biology classes]. Unterricht Biologie, 317, 4–12.
  • Meier, M., & Mayer, J. (2012). Experimentierkompetenz praktisch erfassen - Entwicklung und Validierung eines anwendungsbezogenen Aufgabendesigns [Practical assessment of experimental competence - development and validation of an application-oriented task design]. In U. Harms & F. X. Bogner (Eds.), Lehr- und Lernforschung in der Biologiedidaktik (Vol. 5, pp. 81–98). StudienVerlag.
  • Millar, R., & Lubben, F. (1996). Investigative work in science. The role of prior expectations and evidence in shaping conclusions. Educational Research, 13(3), 28–34. https://doi.org/10.1080/03004279685200061
  • Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction -what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496. https://doi.org/10.1002/tea.20347
  • Mokros, J. R., & Tinker, R. F. (1987). The impact of microcomputer based labs on children’s ability to interpret graphs. Journal of Research in Science Teaching, 24, 369–383. https://doi.org/10.1002/tea.3660240408
  • Neber, H., & Anton, M. A. (2008a). Förderung präexperimenteller epistemischer Aktivitäten im Chemieunterricht. [Promoting pre-experimental epistemic activities in chemistry education. Zeitschrift für Pädagogische Psychologie, 22(2), 143–150. https://doi.org/10.1024/1010-0652.22.2.143
  • Neber, H., & Anton, M. A. (2008b). Promoting Pre-experimental activities in high‐school chemistry: Focusing on the role of students’ epistemic questions. International Journal of Science Education, 30(13), 1801–1821. https://doi.org/10.1080/09500690701579546
  • NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press.
  • Njoo, M., & de Jong, T. (1993). Exploratory learning with a computer simulation for control theory: Learning processes and instructional support. Journal of Research in Science Teaching, 30, 821–844. https://doi.org/10.1002/tea.3660300803
  • NRC. (1996) . National science education standards. The National Academies Press.
  • NRC. (2000) . Inquiry and the national science education standards. The National Academy Press.
  • NRC. (2012) . A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. The National Academies Press.
  • NRC. (2013). Next generation science standards: For states, by states. The National Academies Press. https://www.nextgenscience.org/get-to-know
  • OECD. (2018). The science of teaching science: An exploration of science teaching practices in PISA 2015. Paris: OECD Publishing.
  • OECD. (2019). PISA 2018. Assessment and analytical framework. https://doi.org/10.1787/b25efab8-en
  • Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25, 177–196. https://doi.org/10.1007/s10972-014-9384-1
  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What ‚ideas-about-science’ should be taught in school science? A delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720. https://doi.org/10.1002/tea.10105
  • Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. The Nuffield Foundation.
  • Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., & McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ, 372(n160). https://doi.org/10.1136/bmj.n160
  • Park, J. (2006). Modelling analysis of students’ processes of generating scientific explanatory hypotheses. International Journal of Science Education, 28(5), 469–489. https://doi.org/10.1080/09500690500404540
  • Pedaste, Margus, Mäeots, Mario, Leijen, Ääli, Sarapuu, Tago 2012 Improving Students’ Inquiry Skills through Reflection and Self-Regulation Scaffolds Tech., Inst., Cognition and Learning 9 81–95
  • Pedaste, M., Mäeots, M., Leijen, Ä., & Sarapuu, T. (2012). Improving students’ inquiry skills through reflection and self-regulation scaffolds. Tech. Inst. Cognition and Learning, 9, 81–95. https://www.oldcitypublishing.com/journals/ticl-home/ticl-issue-contents/ticl-volume-9-number-1-2-2011/ticl-9-1-2-p-81-95/
  • Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003
  • Penner, D. E., & Klahr, D. (1996a). The Interaction of Domain-Specific Knowledge and domain-general discovery strategies: A study with sinking objects. Child Development, 67(6), 2709–2727. https://doi.org/10.2307/1131748
  • Penner, D. E., & Klahr, D. (1996b). When to trust the data: Further investigations of system error in a scientific reasoning task. Memory & Cognition, 24, 655–668. https://doi.org/10.3758/BF03201090
  • Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences: A practical guide. Malden, MA, USA: Blackwell Publishing Ltd. https://doi.org/10.1002/9780470754887
  • Popper, K. R. (1966). Logik der Forschung [The logic of scientific discovery]. J.C.B. Mohr.
  • Quinn, J., & Alessi, S. (1994). The effects of simulation complexity and hypothesis generation strategy on learning. Journal of Research on Computing in Education, 27, 75–91. https://doi.org/10.1080/08886504.1994.10782117
  • Ramnarain, U. (2012). Exploring the use of a cartoon as a learner scaffold in the planning of scientific investigations. Perspectives in Education, 30(2), 50–61. Retrieved July 9, 2021, from https://www.ajol.info/index.php/pie/article/view/81906
  • Reimann, P. (1991). Detecting functional relations in a computerized discovery environment. Learning and Instruction, 1, 45–65. https://doi.org/10.1016/0959-4752(91)90018-4
  • Roberts, R., & Gott, R. (2006). Assessment of biology investigations. Journal of Biological Education, 37(3), 114–121. https://doi.org/10.1080/00219266.2003.9655865
  • Roberts, R., Gott, R., & Glaesser, J. (2010). Students’ approaches to open‐ended science investigation: The importance of substantive and procedural understanding. Research Papers in Education, 25, 377–407. https://doi.org/10.1080/02671520902980680
  • Rönnebeck, S., Bernholt, S., & Ropohl, M. (2016). Searching for a common ground – A literature review of empirical research on scientific inquiry activities. Studies in Science Education, 52(2), 161–197. https://doi.org/10.1080/03057267.2016.1206351
  • Sawyer, K. (2006). Introduction. In K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 1–18). Cambridge University Press.
  • Schauble, L. (1990). Belief revision in children: The role of prior knowledge and strategies for generating evidence. Journal of Experimental Child Psychology, 49, 31–57. https://doi.org/10.1016/0022-0965(90)90048-D
  • Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32, 102–119. https://doi.org/10.1037/0012-1649.32.1.102
  • Schauble, L., Glaser, R., Duschl, R. A., Schulze, S., & John, J. (1995). Students’ understanding of the objectives and procedures of experimentation in the science classroom. The Journal of the Learning Sciences, 4, 131–166. https://doi.org/10.1207/s15327809jls0402_1
  • Schauble, L., Glaser, R., Raghavan, K., & Reiner, M. (1991a). Causal models and experimentation strategies in scientific reasoning. The Journal of Learning Sciences, 1(2), 201–238. https://doi.org/10.1207/s15327809jls0102_3
  • Schauble, L., Klopfer, L. E., & Raghavan, K. (1991b). Students’ transition from an engineering model to a science model of experimentation. Journal of Research in Science Teaching, 28, 859–882. https://doi.org/10.1002/tea.3660280910
  • Schrempp, I., & Sodian, B. (1999). Wissenschaftliches Denken im Grundschulalter: Die Fähigkeit zur Hypothesenprüfung und Evidenzevaluation im Kontext der Attribution von Leistungsergebnissen [Scientific thinking at primary school age: The ability to test hypotheses and evaluate evidence in the context of attributing performance outcomes]. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 31(2), 67–77. https://doi.org/10.1026//0049-8637.31.2.67
  • Schroeder, C. M., Scott, T. P., Tolson, H., Huang, T.-Y., & Lee, Y.-H. (2007). A meta-analysis of national research: Effects of teaching strategies on student achievement in science in the United States. Journal of Research in Science Teaching, 44(10), 1436–1460. https://doi.org/10.1002/tea.20212
  • Schwichow, M., Croker, S., Zimmerman, C., Höffler, T., & Härtig, H. (2016). Teaching the control-of-variables strategy: A meta-analysis. Developmental Review, 39, 37–63. https://doi.org/10.1016/j.dr.2015.12.001
  • Sharon, A. J., & Baram‐Tsabari, A. (2020). Can science literacy help individuals identify misinformation in everyday life? Science Education, 104, 873–894. https://doi.org/10.1002/sce.21581
  • Shavelson, R. J., Ruiz-Primo, M. A., & Wiley, E. W. (1999). Note on sources of sampling variability in science performance assessments. Journal of Educational Measurement, 36(1), 61–71. https://doi.org/10.1111/j.1745-3984.1999.tb00546.x
  • Shute, V. J., & Glaser, R. (1990). A large-scale evaluation of an intelligent discovery world: Smithtown. Interactive Learning Environments, 1, 51–77. https://doi.org/10.1080/1049482900010104
  • Siegler, R. S., & Liebert, R. M. (1975). Acquisition of formal scientific reasoning by 10- and 13-year-olds: Designing a factorial experiment. Developmental Psychology, 11, 401–402. https://doi.org/10.1037/h0076579
  • Siler, S. A., & Klahr, D. (2012). Detecting, classifying, and remediating Children’s explicit and implicit misconceptions about experimental design. In R. W. Proctor & E. J. Capaldi (Eds.), Psychology of science (pp. 137–180). Oxford University Press.
  • Stender, A., Schwichow, M., Zimmerman, C., & Härtig, H. (2018). Making inquiry-based science learning visible: The influence of CVS and cognitive skills on content knowledge learning in guided inquiry. International Journal of Science Education, 40(15), 1812–1831. https://doi.org/10.1080/09500693.2018.1504346
  • Steuer, G., Rosentritt-Brunn, G., & Dresel, M. (2013). Dealing with errors in mathematics classrooms. Structure and relevance of perceived error climate. Contemporary Educational Psychology, 38(3), 196–210. https://doi.org/10.1016/j.cedpsych.2013.03.002
  • Tairab, H. H. (2015). Assessing students’ understanding of control of variables across three grade levels and gender. International Education Studies, 9(1), 44–54. https://doi.org/10.5539/IES.V9N1P44
  • Tschirgi, J. E. (1980). Sensible reasoning: A hypothesis about hypotheses. Child Development, 51, 1–10. https://doi.org/10.2307/1129583
  • Tulis, M., Steuer, G., & Dresel, M. (2016). Learning from errors: A model of individual processes. Frontline Learning Research, 4(2), 12–26. http://dx.doi.org/10.14786/flr.v4i2.168
  • Valanides, N., Papageorgiou, M., & Angeli, C. (2013). Scientific investigations of elementary school children. Journal of Science Education and Technology, 23(1), 26–36. https://doi.org/10.1007/s10956-013-9448-6
  • van Joolingen, W. R., & de Jong, T. (1991). Supporting hypothesis generation by learners exploring an interactive computer simulation. Instructional Science, 20, 389–404. https://doi.org/10.1007/BF00116355
  • van Uum, M. S. J., Verhoeff, R. P., & Peeters, M. (2017). Inquiry based science education: Scaffolding pupils’ self-directed learning in open inquiry. International Journal of Science Education, 39(18), 2461–2481. https://doi.org/10.1080/09500693.2017.1388940
  • Vorholzer, A., & von Aufschnaiter, C. (2019). Guidance in inquiry-based instruction – An attempt to disentangle a manifold construct. International Journal of Science Education, 41(11), 1562–1577. https://doi.org/10.1080/09500693.2019.1616124
  • Wahser, I., & Sumfleth, E. (2008). Training experimenteller Arbeitsweisen zur Unterstützung kooperativer Kleingruppenarbeit im Fach Chemie. [Training of experimental working methods to support cooperative work in small groups in the subject chemistry]. Zeitschrift für Didaktik der Naturwissenschaften, 14, 219–241. https://archiv.ipn.uni-kiel.de/zfdn/pdf/14_012_Wahser_Sumfleth.pdf
  • Wason, P. C. (1960). On the failure to eliminate hypotheses in a conceptual task. Quarterly Journal of Experimental Psychology, 12(3), 129–140. https://doi.org/10.1080/17470216008416717
  • Wellnitz, N., & Mayer, J. (2011). Modelling and assessing scientific methods. In the Proceedings of the Annual meeting of the National Association of Research in Science Teaching (NARST), Orlando, Florida, United States. NARST.
  • White, B. Y. (1993). ThinkerTools: Causal models, conceptual change, and science education. Cognition and Instruction, 10, 1–100. https://doi.org/10.1207/s1532690xci1001_1
  • White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3–118. https://doi.org/10.1207/s1532690xci1601_2
  • Winter, V., Kranz, J., & Möller, A. (2022). Climate Change Education Challenges from Two Different Perspectives of Change Agents: Perceptions of School Students and Pre-Service Teachers. Sustainability, 14(10). https://doi.org/10.3390/su14106081
  • Wu, H.-K., & Wu, C.-L. (2011). Exploring the development of fifth graders’ practical epistemologies and explanation skills in inquiry-based learning classrooms. Research in Science Education, 41(3), 319–340. https://doi.org/10.1007/s11165-010-9167-4
  • Zhai, J., Jocz, J. A., & Tan, A.-L. (2014). ‘Am I Like a scientist?’: Primary children’s images of doing science in school. International Journal of Science Education, 36(4), 553–574. https://doi.org/10.1080/09500693.2013.791958
  • Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172–223. https://doi.org/10.1016/j.dr.2006.12.001
  • Zimmerman, C., Raghavan, K., & Sartoris, M. L. (2003). The impact of the Mars curriculum on students’ ability to coordinate theory and evidence. International Journal of Science Education, 25, 1247–1271. https://doi.org/10.1080/0950069022000038303