1,230
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Variable annuity pricing, valuation, and risk management: a survey

, ORCID Icon &
Pages 867-900 | Received 14 Jun 2021, Accepted 02 Mar 2022, Published online: 28 Mar 2022

References

  • Academy's Economic Scenario Work Group (2010). C3 phase II, c3 phase III, and VM-20 interest rate and equity return generator (version 7). Technical Report. The American Academy of Actuaries and the Society of Actuaries (SOA).
  • Acerbi C. & Tasche D. (2002). On the coherence of expected shortfall. Journal of Banking and Finance 26(7), 1487–1503.
  • Alonso-García J., Wood O. & Ziveyi J. (2018). Pricing and hedging guaranteed minimum withdrawal benefits under a general Lévy framework using the COS method. Quantitative Finance 18(6), 1049–1075.
  • Ankirchner S., Schneider J. C. & Schweizer N. (2014). Cross-hedging minimum return guarantees: basis and liquidity risks. Journal of Economic Dynamics and Control 41, 93–109.
  • Artzner P., Delbaen F., Eber J.-M. & Heath D. (1999). Coherent measures of risk. Mathematical Finance9(3), 203–228.
  • Augustyniak M. & Boudreault M. (2012). An out-of-sample analysis of investment guarantees for equity-linked products. North American Actuarial Journal 16(2), 183–206.
  • Augustyniak M. & Boudreault M. (2017). Mitigating interest rate risk in variable annuities: an analysis of hedging effectiveness under model risk. North American Actuarial Journal 21(4), 502–525.
  • Bacinello A. (2008). A full Monte Carlo approach to the valuation of the surrender option embedded in life insurance contracts. In Mathematical and Statistical Methods in Insurance and Finance. Milan: Springer. P. 19–26.
  • Bacinello A., Millossovich P., Olivieri A. & Pitacco E. (2011). Variable annuities: a unifying valuation approach. Insurance: Mathematics and Economics 49(3), 285–297.
  • Baiye S. (2015). Hybrid indices in fixed indexed annuities: the new wave. Product Matters 92, 1–7.
  • Baiye S., Humphreys R. & Knipe D. (2018). Indexed variable annuities: the next product frontier for the U.S. annuity market. Product Matters 109, 4–7.
  • Ballotta L. & Haberman S. (2003). Valuation of guaranteed annuity conversion options. Insurance: Mathematics and Economics 33(1), 87–108.
  • Ballotta L. & Haberman S. (2006). The fair valuation problem of guaranteed annuity options: the stochastic mortality environment case. Insurance: Mathematics and Economics 38(1), 195–214.
  • Bauer D., Gao J., Moenig T., Ulm E. R. & Zhu N. (2017). Policyholder exercise behavior in life insurance: the state of affairs. North American Actuarial Journal 21(4), 485–501.
  • Bauer D., Kling A. & Russ J. (2008). A universal pricing framework for guaranteed minimum benefits in variable annuities. ASTIN Bulletin 38(2), 621–651.
  • Bauer D. & Zanjani G. H. (2013). Capital allocation and its discontents. In Handbook of Insurance. New York: Springer. P. 863–880.
  • Bélanger A., Forsyth P. & Labahn G. (2009). Valuing the guaranteed minimum death benefit clause with partial withdrawals. Applied Mathematical Finance 16(6), 451–496.
  • Bernard C., Hardy M. R. & MacKay A. (2014). State-dependent fees for variable annuity guarantees. ASTIN Bulletin 44(3), 559–585.
  • Bernard C. & Moenig T. (2018). Where less is more: reducing variable annuity fees to benefit policyholder and insurer. Journal of Risk and Insurance 86(3), 761–782.
  • Black F. & Scholes M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy 81(3), 637–54.
  • Boyle P. & Hardy M. (1997). Reserving for maturity guarantees: two approaches. Insurance: Mathematics and Economics 21(2), 113–127.
  • Boyle P. & Hardy M. (2003). Guaranteed annuity options. ASTIN Bulletin 33(2), 125–152.
  • Brennan M. & Schwartz E. (1976). The pricing of equity-linked life insurance policies with an asset value guarantee. Journal of Financial Economics 3, 195–213.
  • Briere-Giroux G. (2015). Fixed indexed annuities: recap …and what is next? Product Matters 91, 18–21.
  • Brown J. R. & Poterba J. M. (2006). Household ownership of variable annuities. Tax Policy and the Economy 20, 163–191.
  • Cairns A. J., Blake D., Dowd K., Coughlan G. D., Epstein D. & Khalaf-Allah M. (2011). Mortality density forecasts: an analysis of six stochastic mortality models. Insurance: Mathematics and Economics48(3), 355–367.
  • Carmona R. & Durrleman V. (2006). Generalizing the Black-Scholes formula to multivariate contingent claims. Journal of Computational Finance 9(2), 43–67.
  • Cathcart M. J., Lok H. Y., McNeil A. J. & Morrison S. (2015). Calculating variable annuity liability ‘greeks’ using Monte Carlo simulation. ASTIN Bulletin 45(2), 239–266.
  • Chen Z. & Forsyth P. (2008). A numerical scheme for the impulse control formulation for pricing variable annuities with a guaranteed minimum withdrawal benefit (GMWB). Numerische Mathematik 109(4), 535–569.
  • Chopra D., Erzan O., de Gantes G., Grepin L. & Slawner C. (2009). Responding to the variable annuity crisis. McKinsey Working Papers on Risk.
  • Coleman T. F., Kim Y., Li Y. & Patron M. (2007). Robustly hedging variable annuities with guarantees under jump and volatility risks. Journal of Risk and Insurance 74, 347–376.
  • Coleman T., Li Y. & Patron M.-C. (2006). Hedging guarantees in variable annuities under both equity and interest rate risks. Insurance: Mathematics and Economics 38, 215–228.
  • Cui Z., Feng R. & MacKay A. (2017). Variable annuities with VIX-linked fee structure under a Heston-type stochastic volatility model. North American Actuarial Journal 21(3), 458–483.
  • Da Fonseca J. & Ziveyi J. (2017). Valuing variable annuity guarantees on multiple assets. Scandinavian Actuarial Journal 2017(3), 209–230.
  • Dai M., Kwok Y. & Zong J. (2008). Guaranteed minimum withdrawal benefit in variable annuities. Mathematical Finance 18(4), 595–611.
  • Dai T.-S., Yang S. S. & Liu L.-C. (2015). Pricing guaranteed minimum/lifetime withdrawal benefits with various provisions under investment, interest rate and mortality risks. Insurance: Mathematics and Economics 64, 364–379.
  • Dang O., Feng M. & Hardy M. R. (2019). Efficient nested simulation for conditional tail expectation of variable annuities. North American Actuarial Journal 24(2), 187–210.
  • Dardis T. (2016). Model efficiency in the U.S. life insurance industry. The Modeling Platform 3, 9–16.
  • Deelstra G., Grasselli M. & Weverberg C. V. (2016). The role of the dependence between mortality and interest rates when pricing guaranteed annuity options. Insurance: Mathematics and Economics 71, 205–219.
  • Deelstra G. & Rayée G. (2013). Pricing variable annuity guarantees in a local volatility framework. Insurance: Mathematics and Economics 53(3), 650–663.
  • Delong L. (2014). Pricing and hedging of variable annuities with state-dependent fees. Insurance: Mathematics and Economics 58, 24–33.
  • Denuit M., Dhaene J., Goovaerts M. & Kaas R. (2005). Actuarial theory for dependent risks: measures, orders and models. Chichester: John Wiley and Sons.
  • Drexler A. H., Plestis T. & Rosen R. J. (2017). How much risk do variable annuity guarantees pose to life insurers? Chicago Fed Letter (384). https://www.chicagofed.org/~/media/publications/chicago-fed-letter/2017/cfl384-pdf.pdf
  • Drinkwater M., Iqbal J. & Montminy J. E. (2014). Variable annuity guaranteed living benefits utilization – 2012 experience. Technical Report. Society of Actuaries and LIMRA.
  • Drinkwater M., Iqbal J. & Montminy J. E. (2015). Variable annuity guaranteed living benefits utilization – 2013 experience. Technical Report. Society of Actuaries and LIMRA.
  • Farr I., Koursaris A. & Mennemeyer M. (2016). Economic capital for life insurance companies. Technical Report. Society of Actuaries.
  • Feng R. (2014). A comparative study of risk measures for guaranteed minimum maturity benefits by a PDE method. North American Actuarial Journal 18(4), 445–461.
  • Feng R. (2018). An introduction to computational risk management of equity-linked insurance. Chapman & Hall/CRC Financial Mathematics Series. Boca Raton, FL: CRC Press.
  • Feng R., Cui Z. & Li P. (2016). Nested stochastic modeling for insurance companies. Technical Report. Society of Actuaries.
  • Feng R. & Huang H. (2016). Statutory financial reporting for variable annuity guaranteed death benefits: market practice, mathematical modeling and computation. Insurance: Mathematics and Economics 67, 54–64.
  • Feng R. & Jing X. (2017). Analytical valuation and hedging of variable annuity guaranteed lifetime withdrawal benefits. Insurance: Mathematics and Economics 72, 36–48.
  • Feng R., Jing X. & Dhaene J. (2017). Comonotonic approximations of risk measures for variable annuity guaranteed benefits with dynamic policyholder behavior. Journal of Computational and Applied Mathematics 311, 272–292.
  • Feng R., Kuznetsov A. & Yang F. (2016). A short proof of duality relations for hypergeometric functions. Journal of Mathematical Analysis and Applications 443(1), 116–122.
  • Feng R., Kuznetsov A. & Yang F. (2019). Exponential functionals of Lévy processes and variable annuity guaranteed benefits. Stochastic Processes and Their Applications 129(2), 604–625.
  • Feng R. & Li P. (2021). Sample recycling method – a new approach to efficient nested Monte Carlo simulations. Preprint.
  • Feng R. & Shimizu Y. (2016). Applications of central limit theorems for equity-linked insurance. Insurance: Mathematics and Economics 69, 138–148.
  • Feng B. M., Tan Z. & Zheng J. (2020). Efficient simulation designs for valuation of large variable annuity portfolios. North American Actuarial Journal 24(2), 275–289.
  • Feng R. & Vecer J. (2017). Risk based capital for guaranteed minimum withdrawal benefit. Quantitative Finance 17(3), 471–478.
  • Feng R. & Volkmer H. (2012). Analytical calculation of risk measures for variable annuity guaranteed benefits. Insurance: Mathematics and Economics 51(3), 636–648.
  • Feng R. & Volkmer H. W. (2014). Spectral methods for the calculation of risk measures for variable annuity guaranteed benefits. ASTIN Bulletin 44(3), 653–681.
  • Feng R. & Volkmer H. W. (2016). An identity of hitting times and its application to the valuation of guaranteed minimum withdrawal benefit. Mathematics and Financial Economics 10(2), 127–149.
  • Fung M. C., Ignatieva K. & Sherris M. (2014). Systematic mortality risk: an analysis of guaranteed lifetime withdrawal benefits in variable annuities. Insurance: Mathematics and Economics 58, 103–115.
  • Gan G. (2013). Application of data clustering and machine learning in variable annuity valuation. Insurance: Mathematics and Economics 53(3), 795–801.
  • Gan G. (2015a). Application of metamodeling to the valuation of large variable annuity portfolios. In Proceedings of the Winter Simulation Conference. Huntington Beach California: IEEE Press. P. 1103–1114.
  • Gan G. (2015b). A multi-asset Monte Carlo simulation model for the valuation of variable annuities. In Proceedings of the Winter Simulation Conference. Huntington Beach California: IEEE Press. P. 3162–3163.
  • Gan G. (2018). Valuation of large variable annuity portfolios using linear models with interactions. Risks6(3), 71.
  • Gan G. & Huang J. (2017). A data mining framework for valuing large portfolios of variable annuities. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax NS Canada: ACM. P. 1467–1475.
  • Gan G. & Lin X. S. (2015). Valuation of large variable annuity portfolios under nested simulation: a functional data approach. Insurance: Mathematics and Economics 62, 138–150.
  • Gan G. & Lin X. S. (2017). Efficient greek calculation of variable annuity portfolios for dynamic hedging: a two-level metamodeling approach. North American Actuarial Journal 21(2), 161–177.
  • Gan G. & Valdez E. A. (2016). An empirical comparison of some experimental designs for the valuation of large variable annuity portfolios. Dependence Modeling 4(1), 382–400.
  • Gan G. & Valdez E. A. (2017a). Modeling partial greeks of variable annuities with dependence. Insurance: Mathematics and Economics 76, 118–134.
  • Gan G. & Valdez E. A. (2017b). Valuation of large variable annuity portfolios: Monte Carlo simulation and synthetic datasets. Dependence Modeling 5, 354–374.
  • Gan G. & Valdez E. A. (2018a). Nested stochastic valuation of large variable annuity portfolios: Monte Carlo simulation and synthetic datasets. Data 3(3), 31.
  • Gan G. & Valdez E. A. (2018b). Regression modeling for the valuation of large variable annuity portfolios. North American Actuarial Journal 22(1), 40–54.
  • Gan G. & Valdez E. A. (2019). Metamodeling for variable annuities. Boca Raton, FL: Chapman & Hall/CRC Press.
  • Gao J. & Ulm E. (2012). Optimal consumption and allocation in variable annuities with guaranteed minimum death benefits. Insurance: Mathematics and Economics 51(3), 586–598.
  • Gerber H., Shiu E. & Yang H. (2012). Valuing equity-linked death benefits and other contingent options: a discounted density approach. Insurance: Mathematics and Economics 51(1), 73–92.
  • Gerber H., Shiu E. & Yang H. (2013). Valuing equity-linked death benefits in jump diffusion models. Insurance: Mathematics and Economics 53(3), 615–623.
  • Gweon H., Li S. & Mamon R. (2020). An effective bias-corrected bagging method for the valuation of large variable annuity portfolios. ASTIN Bulletin 50(3), 853–871.
  • Haefeli D. (2013). Variable annuities – an analysis of financial stability. Geneva Association Report.
  • Halpern J. & Henke G. (2014). Structured-note annuity: a niche industry born with endless possibilities. The Actuary Magazine 11, 24–27.
  • Hardy M. (2001). A regime-switching model of long-term stock returns. North American Actuarial Journal 5(2), 41–53.
  • Hardy M. (2003). Investment guarantees: modeling and risk management for equity-linked life insurance. Hoboken, NJ: John Wiley & Sons, Inc.
  • Hejazi S. A. & Jackson K. R. (2016). A neural network approach to efficient valuation of large portfolios of variable annuities. Insurance: Mathematics and Economics 70, 169–181.
  • Hejazi S. A., Jackson K. R. & Gan G. (2017). A spatial interpolation framework for efficient valuation of large portfolios of variable annuities. Quantitative Finance and Economics 1(2), 125–144.
  • Horneff V., Maurer R., Mitchell O. S. & Rogalla R. (2015). Optimal life cycle portfolio choice with variable annuities offering liquidity and investment downside protection. Insurance: Mathematics and Economics 63, 91–107.
  • Huang Y. T. & Kwok Y. K. (2014). Analysis of optimal dynamic withdrawal policies in withdrawal guarantee products. Journal of Economic Dynamics and Control 45, 19–43.
  • Huang H., Milevsky M. A. & Salisbury T. S. (2014). Optimal initiation of a GLWB in a variable annuity: no arbitrage approach. Insurance: Mathematics and Economics 56, 102–111.
  • IAA (2010). Stochastic modeling: theory and reality from an actuarial perspective. Ottawa, ON: International Actuarial Association.
  • Jiang S. & Chang M. (2010). Variable annuity with guarantees: valuation and simulation. Journal of Money, Investment and Banking 14, 74–83.
  • Kélani A. & Quittard-Pinon F. (2017). Pricing and hedging variable annuities in a Lévy market: a risk management perspective. The Journal of Risk and Insurance 84(1), 209–238.
  • Kerr D., Briere-Giroux G. & Chiong A. (2014). Hybrid annuities: a growth story. Product Matters 90, 1–6.
  • Kling A., Ruez F. & Ruß J. (2014). The impact of policyholder behavior on pricing, hedging, and hedge efficiency of withdrawal benefit guarantees in variable annuities. European Actuarial Journal4(2), 281–314.
  • Kling A., Ruez F. & Ruß J. (2017). Guaranteed minimum surrender benefits in variable annuities: the impact of regulator-imposed guarantees. European Actuarial Journal 7(2), 353–377.
  • Klugman S. A. (2012). Understanding actuarial practice. Schaumburg, IL: Society of Actuaries.
  • Knoller C., Kraut G. & Schoenmaekers P. (2015). On the propensity to surrender a variable annuity contract: an empirical analysis of dynamic policyholder behavior. Journal of Risk and Insurance 83(4), 979–1006.
  • Ko B., Shiu E. & Wei L. (2010). Pricing maturity guarantee with dynamic withdrawal benefit. Insurance: Mathematics and Economics 47, 216–223.
  • Koijen R. S. J. & Yogo M. (2017). Risk of life insurers: recent trends and transmission mechanisms. Technical Report.
  • Koijen R. & Yogo M. (2018). The fragility of market risk insurance. Technical Report.
  • Li P. & Feng R. (2021). Nested monte carlo simulation in financial reporting: a review and a new hybrid approach. Scandinavian Actuarial Journal 2021(9), 744–778.
  • Liang Z. & Sheng W. (2016). Valuing inflation-linked death benefits under a stochastic volatility framework. Insurance: Mathematics and Economics 69, 45–58.
  • Lin X. S. & Yang S. (2020). Fast and efficient nested simulation for large variable annuity portfolios: a surrogate modeling approach. Insurance: Mathematics and Economics 91, 85–103.
  • Liu X., Mamon R. & Gao H. (2013). A comonotonicity-based valuation method for guaranteed annuity options. Journal of Computational and Applied Mathematics 250, 58–69.
  • Liu K. & Tan K. S. (2020). Real-time valuation of large variable annuity portfolios: a green mesh approach. North American Actuarial Journal 25(3), 313–333.
  • Lombardi L. J. (2014). Valuation of life insurance liabilities, 4th ed. Winsted, CT: ACTEX Publications, Inc.
  • Luo X. & Shevchenko P. V. (2015). Valuation of variable annuities with guaranteed minimum withdrawal and death benefits via stochastic control optimization. Insurance: Mathematics and Economics 62, 5–15.
  • Macdonald A. S., Richards S. J. & Currie I. D. (2018). Modelling mortality with actuarial applications. International Series on Actuarial Science. Cambridge, UK: Cambridge University Press.
  • MacKay A., Augustyniak M., Bernard C. & Hardy M. R. (2015). Risk management of policyholder behavior in equity-linked life insurance. Journal of Risk and Insurance 84(2), 661–690.
  • McNeil A. J., Frey R. & Embrechts P. (2005). Quantitative risk management: concepts, techniques and tools. Princeton Series in Finance. Princeton, NJ: Princeton University Press.
  • Milevsky M. & Posner S. (2001). The titanic option: valuation of the guaranteed minimum death benefit in variable annuities and mutual funds. Journal of Risk and Insurance 68(1), 93–128.
  • Milevsky M. & Salisbury T. (2006). Financial valuation of guaranteed minimum withdrawal benefits. Insurance: Mathematics and Economics 38, 21–38.
  • Moenig T. & Bauer D. (2015). Revisiting the risk-neutral approach to optimal policyholder behavior: a study of withdrawal guarantees in variable annuities. Review of Finance 20(2), 759–794.
  • Moenig T. & Zhu N. (2018). Lapse-and-reentry in variable annuities. Journal of Risk and Insurance85(4), 911–938.
  • Ng A. C.-Y. & Li J. S.-H. (2011). Valuing variable annuity guarantees with the multivariate Esscher transform. Insurance: Mathematics and Economics 49(3), 393–400.
  • Ng A. C.-Y. & Li J. S.-H. (2013). Pricing and hedging variable annuity guarantees with multiasset stochastic investment models. North American Actuarial Journal 17(1), 41–62.
  • Ngai A. & Sherris M. (2011). Longevity risk management for life and variable annuities: the effectiveness of static hedging using longevity bonds and derivatives. Insurance: Mathematics and Economics 49(1), 100–114.
  • Peng J., Leung K. & Kwok Y. (2012). Pricing guaranteed minimum withdrawal benefits under stochastic interest rates. Quantitative Finance 12(6), 933–941.
  • Rockafellar R. T. & Uryasev S. (2000). Optimization of conditional value at risk. Journal of Risk 2, 21–42.
  • Rüschendorf L. (2013). Mathematical risk analysis: dependence, risk bounds, optimal allocations and portfolios. Springer Series in Operations Research and Financial Engineering. Heidelberg: Springer.
  • Shevchenko P. V. & Luo X. (2017). Valuation of variable annuities with guaranteed minimum withdrawal benefit under stochastic interest rate. Insurance: Mathematics and Economics 76, 104–117.
  • Smith E., Hasselback J. & Harmelink P. (2009). Federal taxation: comprehensive topics. Chicago, IL: CCH, Inc.
  • Steinorth P. & Mitchell O. S. (2015). Valuing variable annuities with guaranteed minimum lifetime withdrawal benefits. Insurance: Mathematics and Economics 64, 246–258.
  • Teuguia O. N., Planchet F. & Thérond P.-E. (2011). Optimal strategies for hedging portfolios of unit-linked life insurance contracts with minimum death guarantee. Insurance: Mathematics and Economics 48(2), 161–175.
  • Trottier D.-A., Godin F. & Hamel E. (2018). Local hedging of variable annuities in the presence of basis risk. ASTIN Bulletin 48(2), 611–646.
  • Ulm E. R. (2008). Analytic solution for return of premium and rollup guaranteed minimum death benefit options under some simple mortality laws. ASTIN Bulletin 38(2), 543–563.
  • Ulm E. R. (2014). Analytic solution for ratchet guaranteed minimum death benefit options under a variety of mortality laws. Insurance: Mathematics and Economics 58, 14–23.
  • van Haastrecht A., Plat R. & Pelsser A. (2010). Valuation of guaranteed annuity options using a stochastic volatility model for equity prices. Insurance: Mathematics and Economics 47(3), 266–277.
  • Varnell E. M. (2011). Economic scenario generators and Solvency II. British Actuarial Journal 16, 121–159.
  • Wang S. (1996). Premium calculation by transforming the layer premium density. ASTIN Bulletin 26(1), 71–92.
  • Wang Y. (2009). Quantile hedging for guaranteed minimum death benefits. Insurance: Mathematics and Economics 45(3), 449–458.
  • Xu W., Chen Y., Coleman C. & Coleman T. F. (2018). Moment matching machine learning methods for risk management of large variable annuity portfolios. Journal of Economic Dynamics and Control87, 1–20.
  • Yang S. & Dai T.-S. (2013). A flexible tree for evaluating guaranteed minimum withdrawal benefits under deferred life annuity contracts with various provisions. Insurance: Mathematics and Economics52(2), 231–242.
  • Zhao Y. & Mamon R. (2018). An efficient algorithm for the valuation of a guaranteed annuity option with correlated financial and mortality risks. Insurance: Mathematics and Economics 78, 1–12.
  • Zhou J. & Wu L. (2015). The time of deducting fees for variable annuities under the state-dependent fee structure. Insurance: Mathematics and Economics 61, 125–134.
  • Zhu Z. & Welsch R. E. (2015). Statistical learning for variable annuity policyholder withdrawal behavior. Applied Stochastic Models in Business and Industry 31(2), 137–147.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.