92
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ensemble distributional forecasting for insurance loss reserving

, , &
Received 18 Jan 2023, Accepted 03 Jun 2024, Published online: 03 Jul 2024

References

  • Aiolfia, M., & Timmermann, A. (2006). Persistence in forecasting performance and conditional combination strategies. Journal of Econometrics, 135(1-2), 31–53. https://doi.org/10.1016/j.jeconom.2005.07.015
  • Al-Mudafer, M. T., Avanzi, B., Taylor, G., & Wong, B. (2022). Stochastic loss reserving with mixture density neural networks. Insurance: Mathematics and Economics, 105, 144–174.
  • APRA (2019). Prudential standard gps 340 insurance liability valuation. https://www.legislation.gov.au/Details/F2018L00738.
  • Avanzi, B., Taylor, G., Wang, M., & Wong, B. (2021). SynthETIC: An individual insurance claim simulator with feature control. Insurance: Mathematics and Economics, 100, 296–308.
  • Baars, J. A., & Mass, C. F. (2005). Performance of national weather service forecasts compared to operational, consensus, and weighted model output statistics. Weather and Forecasting, 20(6), 1034–1047. https://doi.org/10.1175/WAF896.1
  • Balona, C., & Richman, R. (2020). The actuary and ibnr techniques: A machine learning approach. Available at SSRN 3697256.
  • Baran, S., & Lerch, S. (2018). Combining predictive distributions for the statistical post-processing of ensemble forecasts. International Journal of Forecasting, 34(3), 477–496. https://doi.org/10.1016/j.ijforecast.2018.01.005
  • Bellman, R. (1966). Dynamic programming. Science (New York, N.Y.), 153(3731), 34–37. https://doi.org/10.1126/science.153.3731.34
  • Breiman, L. (1996). Stacked regressions. Machine Learning, 24(1), 49–64.
  • Claeskens, G., Magnus, J. R., A. L. Vasnev, & Wang, W. (2016). The forecast combination puzzle: A simple theoretical explanation. International Journal of Forecasting, 32(3), 754–762. https://doi.org/10.1016/j.ijforecast.2015.12.005
  • Conflitti, C., De Mol, C., & Giannone, D. (2015). Optimal combination of survey forecasts. International Journal of Forecasting, 31(4), 1096–1103. https://doi.org/10.1016/j.ijforecast.2015.03.009
  • Coqueret, G., & Guida, T. (2020). Machine learning for factor investing: R version. CRC Press.
  • Costantini, M., & Kunst, R. M. (2011). On the usefulness of the Diebold-Mariano test in the selection of prediction models. Statistical Journal, 22, 153–161.
  • Diebold, F. X. (2015). Comparing predictive accuracy, twenty years later: A personal perspective on the use and abuse of Diebold–Mariano tests. Journal of Business & Economic Statistics, 33(1), 1–1. https://doi.org/10.1080/07350015.2014.983236
  • Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive accuracy. Journal of Business & Economic Statistics, 20(1), 134–144. https://doi.org/10.1198/073500102753410444
  • England, P. D., & Verrall, R. J. (2001). A flexible framework for stochastic claims reserving. In Proceedings of the Casualty Actuarial Society (Vol. 88, No. 1, pp. 1-38).
  • Friedland, J. (2010). Estimating unpaid claims using basic techniques. Casualty Actuarial Society.
  • Gabrielli, A. (2020). A neural network boosted double overdispersed Poisson claims reserving model. ASTIN Bulletin, 50(1), 25–60. https://doi.org/10.1017/asb.2019.33
  • Gabrielli, A., Richman, R., & Wüthrich, M. V. (2020). Neural network embedding of the over-dispersed Poisson reserving model. Scandinavian Actuarial Journal, 2020(1), 1–29. https://doi.org/10.1080/03461238.2019.1633394
  • Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application, 1, 1125–151. https://doi.org/10.1146/statistics.2013.1.issue-1
  • Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359–378. https://doi.org/10.1198/016214506000001437
  • Gneiting, T., Raftery, A. E., Westveld III, A. H., & Goldman, T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum crps estimation. Monthly Weather Review, 133(5), 1098–1118. https://doi.org/10.1175/MWR2904.1
  • Gneiting, T., & Ranjan, R. (2011). Comparing density forecasts using threshold-and quantile-weighted scoring rules. Journal of Business & Economic Statistics, 29(3), 411–422. https://doi.org/10.1198/jbes.2010.08110
  • Gneiting, T., & Ranjan, R. (2013). Combining predictive distributions. Electronic Journal of Statistics, 7, none1747–1782.
  • Good, I. J. (1992). Rational decisions. In Breakthroughs in statistics (pp. 365–377). Springer.
  • Green, P. J., & Silverman, B. W. (1993). Nonparametric regression and generalized linear models: A roughness penalty approach. Crc Press.
  • Gu, C., & Xiang, D. (2001). Cross-validating non-Gaussian data: Generalized approximate cross-validation revisited. Journal of Computational and Graphical Statistics, 10(3), 581–591. https://doi.org/10.1198/106186001317114992
  • Hall, S. G., & Mitchell, J. (2004). Density forecast combination. Tanaka Business School.
  • Hall, S. G., & Mitchell, J. (2007). Combining density forecasts. International Journal of Forecasting, 23(1), 1–13. https://doi.org/10.1016/j.ijforecast.2006.08.001
  • Harnau, J., & Nielsen, B. (2018). Over-dispersed age-period-cohort models. Journal of the American Statistical Association, 113(524), 1722–1732. https://doi.org/10.1080/01621459.2017.1366908
  • Hersbach, H. (2000). Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather and Forecasting, 15(5), 559–570. https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
  • Jamal, S., Canto, S., Fernwood, R., Giancaterino, C., Hiabu, M., Invernizzi, L., Korzhynska, T., Martin, Z., & Shen, H. (2018). Machine learning & traditional methods synergy in non-life reserving. Report of the ASTIN Working Party of the International Actuarial Association. Available online: https://www.actuaries.org/IAA/Documents/ASTIN/ASTIN_MLTMS%20Report_SJAMAL. pdf (accessed on 19 July 2019).
  • Kessy, S. R., Sherris, M., Villegas, A. M., & Ziveyi, J. (2022). Mortality forecasting using stacked regression ensembles. Scandinavian Actuarial Journal, 2022(7), 591–626. https://doi.org/10.1080/03461238.2021.1999316
  • Knüppel, M., & Krüger, F. (2022). Forecast uncertainty, disagreement, and the linear pool. Journal of Applied Econometrics, 37(1), 23–41. https://doi.org/10.1002/jae.v37.1
  • Kuang, D., Nielsen, B., & Nielsen, J. P. (2008). Identification of the age-period-cohort model and the extended chain-ladder model. Biometrika, 95(4), 979–986. https://doi.org/10.1093/biomet/asn026
  • Kuo, K. (2019). Deeptriangle: A deep learning approach to loss reserving. Risks, 7(3), 97. https://doi.org/10.3390/risks7030097
  • Li, J. (2022). A model stacking approach for forecasting mortality. North American Actuarial Journal 27, 530–545.
  • Lindholm, M., & Palmborg, L. (2022). Efficient use of data for lstm mortality forecasting. European Actuarial Journal 12, 749–778.
  • Lindholm, M., Verrall, R., Wahl, F., & Zakrisson, H. (2020). Machine learning, regression models, and prediction of claims reserves. In Casualty Actuarial Society E-Forum, Summer 2020.
  • Mack, T. (1991). A simple parametric model for rating automobile insurance or estimating ibnr claims reserves. ASTIN Bulletin: The Journal of the IAA, 21(1), 93–109. https://doi.org/10.2143/AST.21.1.2005403
  • Mack, T. (1993). Distribution-free calculation of the standard error of chain ladder reserve estimates. ASTIN Bulletin, 23(2), 213–225. https://doi.org/10.2143/AST.23.2.2005092
  • Martínez Miranda, M. D., Nielsen, B., & Nielsen, J. P. (2015). Inference and forecasting in the age–period–cohort model with unknown exposure with an application to mesothelioma mortality. Journal of the Royal Statistical Society Series A: Statistics in Society, 178(1), 29–55. https://doi.org/10.1111/rssa.12051
  • McDonald, C., & Thorsrud, L. A. (2011). Evaluating density forecasts: Model combination strategies versus the rbnz. Tech. rep., Reserve Bank of New Zealand.
  • Opschoor, A., Van Dijk, D., & Van der Wel, M. (2017). Combining density forecasts using focused scoring rules. Journal of Applied Econometrics, 32(7), 1298–1313. https://doi.org/10.1002/jae.v32.7
  • Parry, M., Dawid, A. P., & Lauritzen, S. (2012). Proper local scoring rules. The Annals of Statistics, 40(1), 561–592. https://doi.org/10.1214/12-AOS971
  • Pinar, M., Stengos, T., & Yazgan, M. E. (2012). Is there an optimal forecast combination?: A stochastic dominance approach to the forecasting combination puzzle. Department of Economics and Finance, College of Management and Economics.
  • Raftery, A. E., Gneiting, T., Balabdaoui, F., & Polakowski, M. (2005). Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review, 133(5), 1155–1174. https://doi.org/10.1175/MWR2906.1
  • Ranjan, R., & Gneiting, T. (2010). Combining probability forecasts. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(1), 71–91. https://doi.org/10.1111/j.1467-9868.2009.00726.x
  • Renshaw, A. E., & Verrall, R. J. (1998). A stochastic model underlying the chain-ladder technique. British Actuarial Journal, 4(4), 903–923. https://doi.org/10.1017/S1357321700000222
  • Resti, Y., Ismail, N., & Jamaan, S. H. (2013). Estimation of claim cost data using zero adjusted gamma and inverse gaussian regression models. Journal of Mathematics and Statistics, 9(3), 186–192. https://doi.org/10.3844/jmssp.2013.186.192
  • Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(3), 507–554.
  • Roulston, M. S., & Smith, L. A. (2002). Evaluating probabilistic forecasts using information theory. Monthly Weather Review, 130(6), 1653–1660. https://doi.org/10.1175/1520-0493(2002)130<1653:EPFUIT>2.0.CO;2
  • Shapland, M. R. (2022). Using the hayne mle models: A practitioner's guide. CAS Monograph 4, 4, 39–40.
  • Smith, J., & Wallis, K. F. (2009). A simple explanation of the forecast combination puzzle. Oxford Bulletin of Economics and Statistics, 71(3), 331–355. https://doi.org/10.1111/obes.2009.71.issue-3
  • Spedicato, G. A., Clemente, A. G. P., & Schewe, F. (2014). The use of gamlss in assessing the distribution of unpaid claims reserves. In Casualty Actuarial Society E-Forum, Summer (Vol. 2).
  • Taylor, G. (2000). Loss reserving: An actuarial perspective. Huebner International Series on Risk, Insurance and Economic Security. Kluwer Academic Publishers.
  • Taylor, G. C., & McGuire, G. (2016). Stochastic loss reserving using generalized linear models. Casualty Actuarial Society.
  • Taylor, G. C., & Xu, J. (2016). An empirical investigation of the value of finalisation count information to loss reserving. Variance, 10, 75–120.
  • Verrall, R. J. (1991). On the estimation of reserves from loglinear models. Insurance: Mathematics and Economics, 10(1), 75–80.
  • Vogel, P., Knippertz, P., Fink, A. H., Schlueter, A., & Gneiting, T. (2018). Skill of global raw and postprocessed ensemble predictions of rainfall over northern tropical africa. Weather and Forecasting, 33(2), 369–388. https://doi.org/10.1175/WAF-D-17-0127.1
  • Wright, T. S. (1990). A stochastic method for claims reserving in general insurance. Journal of the Institute of Actuaries, 117(3), 677–731. https://doi.org/10.1017/S0020268100043262
  • Wüthrich, M. V. (2018). Neural networks applied to chain–ladder reserving. European Actuarial Journal, 8(2), 407–436. https://doi.org/10.1007/s13385-018-0184-4
  • Wüthrich, M. V., & Merz, M. (2008). Stochastic claims reserving methods in insurance. John Wiley & Sons.
  • Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using stacking to average Bayesian predictive distributions (with discussion). Bayesian Analysis, 13(3), 917–1007. https://doi.org/10.1214/17-BA1091