2,464
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Profiling Malt Enzymes Related to Impact on Malt Fermentability, Lautering and Beer Filtration Performance of 94 Commercially Produced Malt Batches

ORCID Icon, , , , &
Pages 413-426 | Received 28 Jun 2021, Accepted 09 Sep 2021, Published online: 05 Nov 2021

Literature cited

  • Evans, D. E.; Goldsmith, M.; Dambergs, R.; Nischwitz, R. A Comprehensive Reevaluation of the Small-Scale Congress Mash Protocol Parameters for Determination of Extract and Fermentability. J. Am. Soc. Brew. Chem. 2011, 69, 13–27. DOI: 10.1094/ASBCJ-2011-0111-01.
  • Payen, A.; Persoz, J. F. Memoire Sur la Diastase, Les Principaux Produits de Ses Reactions, et Leurs Applications Aux Arts Industriels. Ann. Chim. 1833, 53, 73–92.
  • Axcell, B. C. Malt Analysis – Prediction or Predicament. Tech. Quart. Master Brew. Ass. Am. 1998, 35, 28–30.
  • Axcell, B. C. Don’t Let Sleeping Dogmas Lie - a Personal Journey in Brewing. Brewer and Distiller Int. 2018, 14, 28–33.
  • Axcell, B. C.; Morrall, P.; Tulej, R.; Murray, J. Malt Quality specifications - A Safeguard or Restriction on Quality. Tech. Quart. Master Brew. Ass. Am. 1984, 21, 101–106.
  • Back, W.; Narziss, L. Malt Parameters and Beer Quality. Brauwelt Int. 1997, 15, 29–37.
  • Evans, D. E. Mashing. Am. Soc. Brew. Chem., and Mast. Brew. Am. Ass., Pilot Knob, Minneapolis, MN, 2021.
  • American Society of Brewing Chemists ASBC Methods of Analysis; American Society of Brewing Chemists: Pilot Knob; 2009.
  • European Brewery Convention Analytica - EBC, ed. E.A. Committee. Vol. 7th Edition. Verlag Hans Carl: Nurnberg, Germany, 2008.
  • ANON. Malt Analysis: Industry-Wide Change in Analysis Approach for Barley Malt 5 EBC. Brauwelt Int. 2020.
  • Cornaggia, C.; Evans, D. E.; Draga, A.; Mangan, D.; McCleary, B. V. Prediction of Potential Malt Extract and Beer Filterability from Conventional and Novel Malt Quality Assessment Parameters. J. Inst. Brew. 2019, 125, 294–309. DOI: 10.1002/jib.567.
  • Gastl, M.; Knofel, T.; Becker, T. Conversion of Isothermal 65 °C Mash-Measurement of Quality Characteristics. Brauwelt 2014, 154, 274–276.
  • Stenholm, K.; Home, S.; Pietila, K.; Jaakkola, N.; Leino, E. Are the Days of Congress Mashing over? Proc. Barley Malt Wort Symp., Inst. Brew.; Central and South African Section: Zimbabwe, 1996; pp. 149–163.
  • Bamforth, C. W. Barley and Malt Starch in Brewing: A General Review. Tech. Quart. Master Brew. Ass. Am. 2003, 40, 89–97.
  • Evans, D. E.; Collins, H. M.; Eglinton, J. K.; Wilhelmson, A. Assessing the Impact of the Level of Diastatic Power Enzymes and Their Thermostability on the Hydrolysis of Starch during Wort Production to Predict Malt Fermentability. J. Am. Soc. Brew. Chem. 2005, 63, 185–198. DOI: 10.1094/ASBCJ-63-0185.
  • Evans, D. E.; Redd, K.; Haraysmow, S. E.; Elvig, N.; Metz, N.; Koutoulis, A. Small Scale Comparison of the Influence of Malt Quality on Malt Brewing with Barley Quality on Barley Brewing Using Ondea Pro. J. Am. Soc. Brew. Chem. 2014, 72, 192–207. DOI: 10.1094/ASBCJ-2014-0630-01.
  • Hardie, D. G. Control of Carbohydrate Formation by Gibberellic Acid in Barley Endosperm. Phytochem. 1975, 14, 1719–1722. DOI: 10.1016/0031-9422(75)85281-2.
  • Arends, A. M.; Fox, G. P.; Henry, R. J.; Marschke, R. J.; Symons, M. H. Genetic and Environmental Variation in the Diastatic Power of Australian Barley. J. Cereal Sci. 1995, 21, 63–70. DOI: 10.1016/S0733-5210(95)80009-3.
  • Evans, D. E.; Dambergs, R.; Ratkowsky, D.; Li, C.; Harasymow, S.; Roumeliotis, S.; Eglinton, J. K. Refining the Prediction of Potential Malt Fermentability by Including an Assessment of Limit Dextrinase Thermostability and Additional Measures of Malt Modification, Using Two Different Methods for Multivariate Model Development. J. Inst. Brew. 2010, 116, 86–97. DOI: 10.1002/j.2050-0416.2010.tb00403.x.
  • Eglinton, J. K.; Langridge, P.; Evans, D. E. Thermostability Variation in Alleles of Barley Beta-Amylase. J. Cereal Sci. 1998, 28, 301–309. DOI: 10.1016/S0733-5210(98)90010-8.
  • Duke, S. H.; Henson, C. A. Tracking the Progress of Wort Sugar Production during Congress Mashing with North American Barley Cultivars and Comparisons to Wort Osmolyte Concentration and Malt Extract. J. Am. Soc. Brew. Chem. 2011, 69, 200–213. DOI: 10.1094/ASBCJ-2011-0829-01.
  • Duke, S. H.; Henson, C. A.; Vinje, M. A. Comparisons of Barley Malt Amylolytic Enzyme Thermostabilities to Work Osmolyte Concentrations, Malt Extract and ASBC Measures of Malt Quality, and Intial Enzyme Activities. J. Am. Soc. Brew. Chem. 2014, 72, 271–284. DOI: 10.1094/ASBCJ-2014-1027-01.
  • Henson, C. A.; Duke, S. H. A Comparison of Standard and Nonstandard Measures of Malt Quality. J. Am. Soc. Brew. Chem. 2008, 66, 11–19. DOI: 10.1094/ASBCJ-2007-1210-01.
  • Vinje, M. A.; Duke, S. H.; Henson, C. A. Comparison of Factors Involved in Starch Degradation in Barley under Laboratory and Malting Conditions. J. Am. Soc. Brew. Chem. 2015, 73, 195–205. DOI: 10.1094/ASBCJ-2015-0318-01.
  • Arakawa, T.; Timasheff, S. N. Stabilization of Protein Structure by Sugars. Biochemistry 1982, 21, 6536–6544. DOI: 10.1021/bi00268a033.
  • Back, J. F.; Oakenfull, D.; Smith, M. B. Increased Thermal Stability of Proteins in the Presence of Sugars and Polyols. Biochemistry 1979, 18, 5191–5196. DOI: 10.1021/bi00590a025.
  • Frigon, R. P.; Lee, J. C. The Stabilization of Calf-Brain Microtubule Protein by Sucrose. Arch. Biochem. Biophys. 1972, 153, 587–589. DOI: 10.1016/0003-9861(72)90376-1.
  • Bamforth, C. W.; Fox, G. P. Critical Aspects of Starch in Brewing. Brewing Sci. 2020, 73, 126–139. DOI: 10.23763/BrSc20-16bamforth.
  • Fox, G. P. Starch in Brewing Applications. In Starch in Food, Sjöö, M., Nilsson, L., Eds.; Woodhead Publishing Series in Food Sci. Tech. Nut.: Sawston, Cambridge, 2018; pp 633–659. DOI: 10.1016/B978-0-08-100868-3.00016-0.
  • Evans, D. E.; Li, C.; Eglinton, J. K. A Superior Prediction of Malt Attenuation. Eur. Brew. Conv. 31st Congr. Proc. 2007, Venice, presentation #4. CD Fachverlag Hans Carl, Nürenberg.
  • Burton, R. A.; Fincher, G. B. Evolution and Development of Cell Walls in Cereal Grains. Front Plant Sci. 2014, 5, 456–471. DOI: 10.3389/fpls.2014.00456.
  • Fincher, G. B. Molecular and Cellular Biology Associated with Endosperm Mobilization in Germinating Cereal Grains. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 305–346. DOI: 10.1146/annurev.pp.40.060189.001513.
  • Anderson, I. W. The Effect of β-Glucan Molecular Weight on the Sensitivity of Dye Hinding Assay Procedures for β-Glucan Estimation. J. Inst. Brew. 1990, 96, 323. DOI: 10.1002/j.2050-0416.19–90.tb01038.x.326.
  • Manzanares, P.; Navarro, A.; Sendra, J. M.; Carbonell, J. V. Selective Determination of β-Glucan of Differing Molecular Size, Using the Calcofluor-Fluourimetric Flow-Injection-Analysis (FIA) Method. J. Inst. Brew. 1991, 97, 101–104. DOI: 10.1002/j.2050-0416.1991.tb01057.x.
  • Manzanares, P.; Navarro, A.; Sendra, J. M.; Carbonell, J. V. Determination of the Average Molecular Weight of Barley β-Glucan within the Range 30-100k by the Calcofluor-FIA Method. J. Cereal Sci. 1993, 18, 211–223. DOI: 10.1006/jcrs.1993.1048.
  • Stewart, D. C.; Hawthorne, D.; Evans, D. E. Cold Sterile Filtration: A Small Scale Filtration Test and Investigation of Membrane Plugging. J. Inst. Brew. 1998, 104, 321–326. DOI: 10.1002/j.2050-0416.1998.tb01003.x.
  • Douglas, S. C. A Rapid Method for the Determination of Pentosans in Wheat Flour. Food Chem. 1981, 7, 139–145. DOI: 10.1016/0308-8146(81)90059-5.
  • Stewart, D. C.; Freeman, G.; Evans, D. E. Development and Assessment of a Small-Scale Wort Filtration Test for the Prediction of Beer Filtration Efficiency. J. Inst. Brew. 2000, 106, 361–366. DOI: 10.1002/j.2050-0416.2000.tb00526.x.
  • Evans, D. E. A More Cost and Labour Efficient Assay for the Combined Measurement of the Diastatic Power Enzymes, β-Amylase, β-Amylase and Limit Dextrinase. J. Am. Soc. Brew. Chem. 2008, 66, 215–222. DOI: 10.1094/ASBCJ-2008-0909-01.
  • Kanauchi, M.; Bamforth, C. W. The Relevance of Different Enzymes for the Hydrolysis of β-Glucans in Malting and Mashing. J. Inst. Brew. 2008, 114, 224–229. DOI: 10.1002/j.2050-0416.2008.tb00332.x.
  • Gastl, M.; Kupetz, M.; Becker, T. Determination of Cytolytic Malt Modification – Part I: Influence of Variety Characteristics. J. Am. Soc. Brew. Chem. 2021, 79, 53–65. DOI: 10.1080/03610470.2020.1796156.
  • Evans, D. E.; Hamet, M. A. G. The Selection of a Dried Yeast Strain for Use in the Apparent Attenuation Limit Malt Analysis (AAL) Procedure. J. Inst. Brew. 2005, 111, 209–214. DOI: 10.1002/j.2050-0416.2005.tb00668.x.
  • Jin, H.; Rogers, P. Novel Recovery of Malt Flavours from Their Glycosidically Bound Precursors. Tech. Quart. Master Brew. Ass. Am. 2000, 37, 79–83.
  • Liang, Z.; Zhongxiang Fang, Z.; Pai, A.; Luo, J.; Gan, R.; Gao, Y.; Lu, J.; Zhang, P. Glycosidically Bound Aroma Precursors in Fruits: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1–29. DOI: 10.1080/10408398.2020.1813684.
  • Evans, D. E. The Impact of Malt Blending on Extract, Lautering Efficiency and Fermentability. J. Am. Soc. Brew. Chem. 2012, 70, 50–54. DOI: 10.1094/ASBCJ-2011-1208-01.
  • Hennemann, M.; Gastl, M.; Becker, T. Inhomogeneity in the Lauter Tun: A Chromatographic View. Eur. Food Res. Technol. 2019, 245, 521–533. DOI: 10.1007/s00217-018-03226-4.
  • Kupetz, M.; Gastl, M. Arabioxylan - a Cytolytic Parameter Often Times Disregarded?! Brauwelt Intl. 2020, 38, 10–14.
  • Li, Y.; Lu, J.; Gu, G. Control of Arabinoxylan Solubilization and Hydrolysis in Mashing. Food Chem. 2005, 90, 101–108. DOI: 10.1016/j.foodchem.2004.03.031.
  • Sadosky, P.; Schwarz, P. B.; Horsley, R. D. Effect of Arabinoxylans, β-Glucans and Dextrins on the Viscosity and Membrane Filterability of a Beer Model System. J. Am. Soc. Brew. Chem. 2002, 60, 153–162. DOI: 10.1094/ASBCJ-60-0153.
  • Sun, J.; Lu, J.; Xie, G. Secretome Analysis of Trichoderma reesei CICC41495 for Degradation of Arabinoxylan in Malted Barley. J. Inst. Brew. 2018, 124, 352–358. DOI: 10.1002/jib.505.
  • Langenaeken, N. A.; Schutter, D. P.; Courtin, C. M. Arabinoxylan from Non-Malted Cereals Can Act as Mouthfeel Contributor in Beer. Carbohydr. Polym. 2020, 239, 116257. DOI: 10.1016/j.carbpol.2020.116257.
  • Krebs, G.; Becker, T.; Gastl, M. Characterization of Polymeric Substance Classes in Cereal-Based Beverages Using Asymmetrical Flow Field-Flow Fractionation with a Multi-Detection System. Anal. Bioanal. Chem. 2017, 409, 5723–5734. DOI: 10.1007/s00216-017-0512-6.
  • Evans, D. E.; Li, C.; Eglinton, J. K. Improved Prediction of Malt Fermentability by the Measurement of the Diastatic Power Enzymes, β-Amylase, α-Amylase and Limit Dextrinase. I. Survey of the Levels of Diastatic Power Enzymes in Commercial Malts. J. Am. Soc. Brew. Chem. 2008, 66, 223–232. DOI: 10.1094/ASBCJ-2008-0909-02.
  • Yousif, A. M.; Evans, D. E. Changes in Malt Quality during Production in Two Commercial Maltings. J. Inst. Brew. 2020, 126, 233–252. DOI: 10.1002/jib.609.
  • Evans, D. E.; Fox, G. P. The Comparison of DP Enzyme Release and Persistence with the Production of Yeast Fermentable Sugars during Modified IoB 65 °C and Congress Programmed Mashes. J. Am. Soc. Brew. Chem. 2017, 75, 302–311. DOI: 10.1094/ASBCJ-2017-4707-01.
  • Verstrepen, K. J.; Derdelinckx, G.; Dufour, J.-P.; Winderickx, J.; Thevelein, J. M.; Pretorius, I. S.; Delvaux, F. R. Flavor-Active Esters: Adding Fruitiness to Beer. J. Biosci. Bioeng. 2003, 96, 110–118. DOI: 10.1016/S1389-1723(03)90112-5.
  • Krebs, G.; Müller, M.; Becker, T.; Gastl, M. Characterization of the Macromolecular and Sensory Profile of Non-Alcoholic Beers Produced With Various Methods. Food Res. Int. 2019, 116, 508–517. DOI: 10.1016/j.foodres.2018.08.067.
  • Langstaff, S. A.; Lewis, M. J. The Mouthfeel of Beer - a Review. J. Inst. Brew. 1993, 99, 31–37. DOI: 10.1002/j.2050-0416.1993.tb01143.x.
  • Ragot, F.; Guinard, J. X.; Shoemaker, C. F.; Lewis, M. J. The Contribution of Dextrins to Beer Sensory Properties. Part 1 Mouthfeel. J. Inst. Brew. 1989, 95, 427–430. DOI: 10.1002/j.2050-0416.1989.tb04650.x.
  • Rubsam, H.; Gastl, M.; Becker, T. Influence of the Range of Molecular Weight Distribution of Beer Components on the Intensity of Palate Fullness. Eur. Food Res. Technol. 2013, 236, 65–75. DOI: 10.1007/s00217-012-1861-1.
  • McCafferty, C. A.; Perch-Nielsen, N.; Bryce, J. H. Effects of Aerobic and Anaerobic Germination on the Debranching Enzyme, Limit Dextrinase, in Barley Malt. J. Am. Soc. Brew. Chem. 2000, 58, 47–50. DOI: 10.1094/ASBCJ-58-0047.
  • Axcell, B. C.; Tulej, R.; Mulder, C. J. The Influence of the Malting Process on Malt Fermentability Performance. In Proc. Inst. Brew. (Australia & New Zealand) 19th Conv. Hobart, 1986, 63–69.
  • Axcell, B. C.; Van Nierop, S.; Vundla, W. Malt Induced Premature Flocculation. Tech. Quart. Master Brew. Ass. Am. 2000, 37, 501–507.
  • Hu, S.; Fan, W.; Dong, J.; Yin, H.; Yu, J.; Liu, J.; Huang, S.; Huang, S.; Zhang, C. Validation and Application of Osmolyte Concentration as an Indicator to Evaluate Fermentability of Wort and Malt. J. Inst. Brew. 2017, 123, 488–496. DOI: 10.1002/jib.454.
  • Fox, G. P.; Staunton, M.; Agnew, E.; D’Arcy, B. Effect of Varying Starch Properties and Mashing Conditions on Wort Sugar Profiles. J. Inst. Brew. 2019, 125, 412–421. DOI: 10.1002/jib.585.
  • Hu, S.; Yu, J.; Dong, J.; Evans, D. E.; Liu, J.; Huang, S.; Huang, S.; Fan, W.; Yin, H.; Li, M. Relationship between Levels of Diastatic Power Enzymes and Wort Sugar Production from Different Barley Cultivars during the Commercial Mashing Process of Brewing. Starch 2014, 66, 615–623. DOI: 10.1002/star.201300152.
  • Langenaeken, N. A.; De Schepper, C. F.; De Schutter, D. P.; Courtin, C. M. Different Gelatinization Characteristics of Small and Large Barley Starch Granules Impact Their Enzymatic Hydrolysis and Sugar Production during Mashing. Food Chem. 2019, 295, 138–146. DOI: 10.1016/j.foodchem.2019.05.045.
  • Langenaeken, N. A.; de Schepper, C. F.; de Schutter, D. P.; Courtin, C. M. Carbohydrate Content and Structure during Malting and Brewing: A Mass Balance Study. J. Inst. Brew. 2020, 126, 253–262. DOI: 10.1002/jib.619.
  • Balet, S.; Guelpa, A.; Fox, G. P.; Manley, M. Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: A Review. Food Anal. Methods 2019, 12, 2344–2360. DOI: 10.1007/s12161-019-01581-w.
  • Fox, G. P.; Visser, J.; Skov, T.; Meijering, I.; Manley, M. Effect of Different Analysis Conditions of a Rapid Visco Analyser Malt Viscograms in Relation to Malt of Varying Fermentability. J. Inst. Brew. 2014, 120, 183–192. DOI: 10.1002/jib.137.
  • MacGregor, A. W.; Bazin, S. L.; Macri, L. J.; Babb, J. C. Modelling the Contribution of Alpha-Amylase, Beta-Amylase and Limit Dextrinase to Starch Degradation during Mashing. J. Cereal Sci. 1999, 29, 161–169. DOI: 10.1006/jcrs.1998.0233.
  • Edney, M. J.; Eglinton, J. K.; Collins, H. M.; Barr, A. R.; Legg, W. G.; Rossnagel, B. G. Effects of the High Heat Stable Beta-Amylase Allele on Fermentability of Malts with Low vs High Diastatic Power. Eur. Brew. Conv. 31st Cong. Proc 2007, Venice, paper #50 CD Fachverlag Hans Carl, Nürenberg.
  • Erdal, K.; Jensen, M. O.; Kristensen, M.; Krough, J. J.; Riis, P.; Vaag, P. Total β-Amylase in Barley Used as a Screening Criteria for Combined Amylolytic Activity in Malt. Eur. Brew. Conv. Cong. Proc. Oslo; IRL Press: Oxford, 1993; pp 147–154.
  • Gibson, T. S.; Solah, V.; Glennie Holmes, M. R.; Taylor, H. R. Diastatic Power in Malted Barley: contributions of Malt Parameters to Its Development and the Potential of Barley Grain β-Amylase to Predict Malt Diastatic Power. J. Inst. Brew. 1995, 101, 277–280. DOI: 10.1002/j.2050-0416.1995.tb00867.x.
  • Lin, Y. K.; Yu, Z. L. Correction Analysis of Beta-Amylase Activity in Mature Barley Seeds and Malt Diastatic Power. Hereditas - Beijing 1990, 12, 12–14.
  • Santos, M. M. M.; Riis, P. Optimized McCleary Method for Measurement of Total β-Amylase in Barley and Its Applicability. J. Inst. Brew. 1996, 102, 271–275. DOI: 10.1002/j.2050-0416.1996.tb00912.x.
  • Ioannidis, J. P. A. Why Most Published Research Findings Are False. PLoS Med. 2005, 2, e124. DOI: 10.1371/journal.pmed.0020124.
  • Huerta-Zurita, R.; Barr, J.; Horsley, R. D.; Schwarz, P. B. Predicting Malt Fermentability in Malting Barley Breeding Lines. J. Am. Soc. Brew. Chem. 2020, 78, 50–62. DOI: 10.1080/03610470.2019.1670037.
  • Ghahramani, Z. Probabilistic Machine Learning and Artificial Intelligence. Nature (London) 2015, 521, 452–459. DOI: 10.1038/nature14541.
  • Jordan, M. I.; Mitchell, T. M. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 349, 255–260. DOI: 10.1126/science.aaa8415.
  • Cooper, C.; Evans, D. E.; Yousif, A.; Metz, N.; Koutoulis, A. Comparison of the Impact on Performance of Small-Scale Mashing with Different Proportions of Unmalted Barley, Ondea Pro®, Malt and Rice. J. Inst. Brew. 2016, 122, 218–227. DOI: 10.1002/jib.325.