781
Views
37
CrossRef citations to date
0
Altmetric
Research Articles

Lysozyme-loaded lipid-polymer hybrid nanoparticles: preparation, characterization and colloidal stability evaluation

, , &
Pages 1865-1876 | Received 24 Nov 2015, Accepted 15 Apr 2016, Published online: 28 Apr 2016

References

  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649–59.
  • Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7:771–82.
  • Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009;86:215–23.
  • Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010;9:615–27.
  • Stolzoff M, Ekladious I, Colby AH, et al. Synthesis and characterization of hybrid polymer/lipid expansile nanoparticles: imparting surface functionality for targeting and stability. Biomacromolecules 2015;16:1958–66.
  • Li L, Xiang D, Shigdar S, et al. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-fPEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. Int J Nanomedicine 2014;9:1083–96.
  • Abra RM, Bankert RB, Chen F, et al. The next generation of liposome delivery systems: recent experience with tumor-targeted, sterically-stabilized immunoliposomes and active-loading gradients. J Liposome Res 2002;12:1–3.
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145–60.
  • Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm 1997;154:123–40.
  • Mandal B, Bhattacharjee H, Mittal N, et al. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 2013;9:474–91.
  • Cheow WS, Hadinoto K. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids Surf B Biointerfaces 2011;85:214–20.
  • Pinto-Alphandary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents 2000;13:155–68.
  • Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006;2:8–21.
  • Valencia PM, Basto PA, Zha L. Single-step assembly of homogenous lipid polymeric and lipid quantum dot nanoparticles enabled by microfluidic rapid mixing. Am Chem Soc 2010;4:1671–9.
  • Gajra B, Dalwadi C, Patel R. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using box behnken design. Daru 2015;23:3. doi: 10.1186/s40199-014-0087-0.
  • Hu Y, Hoerle R, Ehrich M, Zhang C. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability. Acta Biomater 2015;28:149–59.
  • Fang RH, Aryal S, Hu CM, Zhang L. Quick synthesis of lipid-polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir 2010;26:16958–62.
  • Chan JM, Zhang L, Yuet KP, et al. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 2009;30:1627–34.
  • Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 2013;85:427–43.
  • Bhardwaj A, Mehta S, Yadav S, et al. Pulmonary delivery of antitubercular drugs using spray-dried lipid-polymer hybrid nanoparticles. Artif Cells Nanomed Biotechnol 2015;27:1–12.
  • Huo ZJ, Wang SJ, Wang ZQ, et al. Novel nanosystem to enhance the antitumor activity of lapatinib in breast cancer treatment: therapeutic efficacy evaluation. Cancer Sci 2015;106:1429–37.
  • Li Z, Gorfe AA. Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations. Nanoscale 2015;7:814–24.
  • Pokharkar VB, Jolly MR, Kumbhar DD. Engineering of a hybrid polymer-lipid nanocarrier for the nasal delivery of tenofovir disoproxil fumarate: physicochemical, molecular, microstructural, and stability evaluation. Eur J Pharm Sci 2015;71:99–111.
  • Zhang L, Zhu D, Dong X, et al. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery. Int J Nanomedicine 2015;10:2101–14.
  • Wu B, Yu P, Cui C, et al. Folate-containing reduction-sensitive lipid-polymer hybrid nanoparticles for targeted delivery of doxorubicin. Biomater Sci 2015;3:655–64.
  • Zhang RX, Cai P, Zhang T, et al. Polymer-lipid hybrid nanoparticles synchronize pharmacokinetics of co-encapsulated doxorubicin-mitomycin C and enable their spatiotemporal co-delivery and local bioavailability in breast tumor. Nanomedicine 2016;12:1279–90.
  • Ling G, Zhang P, Zhang W, et al. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. J Control Release 2010;148:241–8.
  • Zhao X, Li F, Li Y, et al. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials 2015;46:13–25.
  • Shi K, Zhou J, Zhang Q, et al. Arginine-glycine-aspartic acid-modified lipid-polymer hybrid nanoparticles for docetaxel delivery in glioblastoma multiforme. J Biomed Nanotechnol 2015;11:382–91.
  • Tran TH, Ramasamy T, Choi JY, et al. Tumor-targeting, pH-sensitive nanoparticles for docetaxel delivery to drug-resistant cancer cells. Int J Nanomedicine 2015;10:5249–62.
  • Yan J, Wang Y, Zhang X, et al. Targeted nanomedicine for prostate cancer therapy: docetaxel and curcumin co-encapsulated lipid-polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo. Drug Deliv 2015;23:1–6.
  • Desai PR, Marepally S, Patel AR, et al. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J Control Release 2013;170:51–63.
  • Shi J, Xu Y, Xu X, et al. Hybrid lipid-polymer nanoparticles for sustained siRNA delivery and gene silencing. Nanomedicine 2014;10:897–900.
  • Bose RJ, Arai Y, Ahn JC, et al. Influence of cationic lipid concentration on properties of lipid-polymer hybrid nanospheres for gene delivery. Int J Nanomedicine 2015;10:5367–82.
  • Colombo S, Cun D, Remaut K, et al. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles. J Control Release 2015;201:22–31.
  • Zhu X, Xu Y, Solis LM, et al. Long-circulating siRNA nanoparticles for validating Prohibitin1-targeted non-small cell lung cancer treatment. Proc Natl Acad Sci USA 2015;112:7779–84.
  • Devrim B, Bozkır A. Preparation and characterization of protein-loaded lipid-polymer hybrid nanoparticles with polycaprolactone as polymeric core material. J Biomol Res Ther 2014;3:115. doi:10.4172/2167-7956.1000115.
  • García-Díaz M, Foged C, Nielsen HM. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids. Int J Pharm 2015;482:84–91.
  • Yu F, Li Y, Liu CS, et al. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin. Int J Pharm 2015;484:181–91.
  • Tahara K, Furukawa S, Yamamoto H, Kawashima Y. Hybrid-modified poly (D,L-lactide-co-glycolide) nanospheres for a novel cellular drug delivery system. Int J Pharm 2010;392:311–13.
  • Su X, Wang Z, Li L, et al. Lipid-polymer nanoparticles encapsulating doxorubicin and 2'-deoxy-5-azacytidine enhance the sensitivity of cancer cells to chemical therapeutics. Mol Pharm 2013;10:1901–9.
  • Zhao Y, Lin D, Wu F, et al. Discovery and in vivo evaluation of novel RGD-modified lipid-polymer hybrid nanoparticles for targeted drug delivery. Int J Mol Sci 2014;15:17565–76.
  • Joyce P, Whitby CP, Prestidge CA. Bioactive hybrid particles from poly(d,l-lactide-co-glycolide) nanoparticle stabilized lipid droplets. ACS Appl Mater Interfaces 2015;7:17460–70.
  • Hua X, Tan S, Bandara HM, et al. Externally controlled triggered-release of drug from PLGA micro and nanoparticles. PLoS One 2014;9:e114271.
  • Mandal B, Mittal NK, Balabathula P, et al. Development and in vitro evaluation of core-shell type lipid-polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur J Pharm Sci 2016;81:162–71.
  • Rayaprolu BM, Strom JG. Design and evaluation of D-α-tocopheryl polyethylene glycol 1000 succinate emulsified poly-ɛ-caprolactone nanoparticles for protein/peptide drug delivery. Drug Dev Ind Pharm 2013;39:1046–52.
  • Chouly C, Pouliquen D, Lucet I, et al. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 1996;13:245–55.
  • Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 2006;61:1027–40.
  • Pavlin M, Bregar VB. Stability of nanoparticle suspensions in different biologically relevant media. Dig J Nanomater Bios 2012;7:1389–400.
  • Zhang L, Zhang L. Lipid-polymer hybrid nanoparticles: synthesis, characterization and applications. Nano Life 2010;1:163–73.
  • Ji Z, Jin X, George S, et al. Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol 2010;44:7309–14.
  • Safi M, Courtois J, Seigneuret M, et al. The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 2011;32:9353–63.
  • Fatisson J, Quevedo IR, Wilkinson KJ, Tufenkji N. Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating. Colloids Surf B Biointerfaces 2012;91:198–204.
  • Wang Y, Kho K, Cheow WS, Hadinoto K. A comparison between spray drying and spray freeze drying for dry powder inhaler formulation of drug-loaded lipid-polymer hybrid nanoparticles. Int J Pharm 2012;424:98–106.
  • Devrim B, Bozkır A. Preparation and evaluation of double-walled microparticles prepared with a modified water-in-oil-in-oil-in-water (w1/o/o/w3) method. J Microencapsul 2013;30:741–54.
  • Devrim B, Bozkir A, Canefe K. Preparation and evaluation of PLGA microparticles as carrier for the pulmonary delivery of rhIL-2 : I. Effects of some formulation parameters on microparticle characteristics. J Microencapsul 2011;28:582–94.
  • Kang F, Jiang G, Hinderliter A, et al. Lysozyme stability in primary emulsion for PLGA microsphere preparation: effect of recovery methods and stabilizing excipients. Pharm Res 2002;19:629–33.
  • van de Weert M, Hoechstetter J, Hennink WE, Crommelin DJ. The effect of a water/organic solvent interface on the structural stability of lysozyme. J Control Release 2000;68:351–9.
  • McCloy RA, Rogers S, Caldon CE, et al. Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 2014;13:1400–12.
  • Chen S, Liu W, Wan J, et al. Preparation of coenzyme Q10 nanostructured lipid carriers for epidermal targeting with high pressure microfluidics technique. Drug Dev Ind Pharm 2013;39:20–8.
  • Durán-Lobato M, Martín-Banderas L, Lopes R, et al. Lipid nanoparticles as an emerging platform for cannabinoid delivery: physicochemical optimization and biocompatibility. Drug Dev Ind Pharm 2016;42:190–8.
  • Suresh G, Manjunath K, Venkateswarlu V, Satyanarayana V. Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles. AAPS PharmSciTech 2007;8:E162–E170.
  • Schubert MA, Muller-Goymann CC. Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier. Eur J Pharm Biopharm 2005;61:77–86.
  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer: polycaprolactone in the 21st century. Prog Polym Sci 2010;35:1217–56.
  • Uchida T, Nagareya N, Sakakibara S, et al. Preparation and characterization of polylactic acid microspheres containing bovine insulin by a w/o/w emulsion solvent evaporation method. Chem Pharm Bull 1997;45:1539–43.
  • Sah E, Sah H. Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J Nanomaterials 2015;2015:1–22.
  • Izadifar M, Kelly ME, Haddadi A, Chen X. Optimization of nanoparticles for cardiovascular tissue engineering. Nanotechnology 2015;26:235301.
  • Cho EJ, Holback H, Liu KC, et al. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 2013;10: 2093–110.
  • Hu H, Liu D, Zhao X, et al. Preparation, characterization, cellular uptake and evaluation in vivo of solid lipid nanoparticles loaded with cucurbitacin B. Drug Dev Ind Pharm 2013;39:770–9.
  • Mancini G, Lopes RM, Clemente P, et al. Lecithin and parabens play a crucial role in tripalmitin-based lipid nanoparticle stabilization throughout moist heat sterilization and freeze-drying. Eur J Lipid Sci Technol 2015;117:1947–59.
  • Cooper DL, Harirforoosh S. Effect of formulation variables on preparation of celecoxib loaded polylactide-co-glycolide nanoparticles. PLoS One 2014;9:e113558.
  • Mobarak DH, Salah S, Elkheshen SA. Formulation of ciprofloxacin hydrochloride loaded biodegradable nanoparticles: optimization of technique and process variables. Pharm Dev Technol 2014;19:891–900.
  • Bhatta RS, Chandasana H, Chhonker YS, et al. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies. Int J Pharm 2012;432:105–12.
  • Hafner A, Lovrić J, Romić MD, et al. Evaluation of cationic nanosystems with melatonin using an eye-related bioavailability prediction model. Eur J Pharm Sci 2015;75:142–50.
  • Asthana S, Jaiswal AK, Gupta PK, et al. Th-1 biased immunomodulation and synergistic antileishmanial activity of stable cationic lipid-polymer hybrid nanoparticle: biodistribution and toxicity assessment of encapsulated amphotericin B. Eur J Pharm Biopharm 2015;89:62–73.
  • Puoci F, Cirillo G, Curcio M, et al. Molecularly imprinted polymers (MIPs) in biomedical applications. Biopolymers 2010;28:547–74.
  • Bajsić EG, Bulatović VO, Slouf M, Šitum A. Characterization of biodegradable polycaprolactone containing titanium dioxide micro and nanoparticles. Int J Chem Nucl Metall Mater Eng 2014;8:572–6.
  • Katas H, Hussain Z, Awang SA. Bovine serum albumin-loaded chitosan/dextran nanoparticles: preparation and evaluation of ex vivo colloidal stability in serum. J Nanomater 2013;2013:1–9. Article ID 536291.
  • Blunk T, Luck M, Calvor A, et al. Kinetics of plasma protein adsorption on model particles for controlled drug delivery and drug targeting. Eur J Pharm Biopharm 1996;42:262–8.
  • Valério A, Conti DS, Araújo PHH, et al. Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization. Colloids Surf B Biointerfaces 2015;135:35–41.
  • Agrawal U, Chashoo G, Sharma PR, et al. Tailored polymer-lipid hybrid nanoparticles for the delivery of drug conjugate: dual strategy for brain targeting. Colloids Surf B Biointerfaces 2015;126:414–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.