Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 10
2,396
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Kinetic study of the thermal inactivation of Lactobacillus plantarum during bread baking

, , &
Pages 1277-1289 | Received 15 Mar 2018, Accepted 28 Jun 2018, Published online: 08 Oct 2018

References

  • Whiting, R. C. Microbial Modeling in Foods. Crit. Rev. Food Sci. Nutr. 1995, 35, 467–494. DOI:10.1080/10408690290825493.
  • McMeekin, T.; Bowman, J.; McQuestin, O.; Mellefont, L.; Ross, T.; Tamplin, M. The Future of Predictive Microbiology: Strategic Research, Innovative Applications and Great Expectations. Int. J. Food Microbiol. 2008, 128, 2–9. DOI:10.1016/j.ijfoodmicro.2008.06.026.
  • Peleg, M.; Cole, M. B. Reinterpretation of Microbial Survival curves. Crit. Rev. Food Sci. Nutr. 1998, 38, 353–380. DOI:10.1080/10408699891274246.
  • Fu, N.; Chen, X. D. Towards a Maximal Cell Survival in Convective Thermal Drying Processes. Food Res. Int. 2011, 44, 1127–1149. DOI:10.1016/j.foodres.2011.03.053.
  • Perdana, J.; Zubia, A. A.; Kutahya, O.; Schutyser, M.; Fox, M. Spray Drying of Lactobacillus Plantarum WCFS1 Guided by Predictive Modeling. Drying Technol. 2015, 33, 1789–1797. DOI:10.1080/07373937.2015.1026975.
  • Majeed, M.; Majeed, S.; Nagabhushanam, K.; Natarajan, S.; Sivakumar, A.; Ali, F. Evaluation of the Stability of Bacillus Coagulans MTCC 5856 During Processing and Storage of Functional Foods. Int. J. Food Sci. Technol. 2016, 51, 894–901. DOI:10.1111/ijfs.13044.
  • Zhang, L.; Huang, S.; Ananingsih, V. K.; Zhou, W.; Chen, X. D. A Study on Bifidobacterium Lactis Bb12 Viability in Bread During Baking. J. Food Eng. 2014, 122, 33–37. DOI:10.1016/j.jfoodeng.2013.08.029.
  • Seyedain-Ardabili, M.; Sharifan, A.; Tarzi, B. G. The Production of Synbiotic Bread by Microencapsulation. Food Technol. Biotechnol. 2016, 54, 52–59. DOI:10.17113/ftb.54.01.16.4234.
  • Altamirano-Fortoul, R.; Moreno-Terrazas, R.; Quezada-Gallo, A.; Rosell, C. M. Viability of some Probiotic Coatings in Bread and its Effect on the Crust Mechanical Properties. Food Hydrocoll. 2012, 29, 166–174. DOI:10.1016/j.foodhyd.2012.02.015.
  • Soukoulis, C.; Yonekura, L.; Gan, H. H.; Behboudi-Jobbehdar, S.; Parmenter, C.; Fisk, I. Probiotic Edible Films as a New Strategy for Developing Functional Bakery Products: The Case of Pan Bread. Food Hydrocoll. 2014, 39, 231–242. DOI:10.1016/j.foodhyd.2014.01.023.
  • Zhang, J.; Datta, A. K. Mathematical Modeling of Bread Baking Process. J. Food Eng. 2006, 75, 78–89. DOI:10.1016/j.jfoodeng.2005.03.058.
  • Zhang, L.; Taal, M. A.; Boom, R. M.; Chen, X. D.; Schutyser, M. A. I. Effect of Baking Conditions and Storage on the Viability of Lactobacillus Plantarum Supplemented to Bread. LWT Food Sci. Technol. 2018, 87, 318–325. DOI:10.1016/j.lwt.2017.09.005.
  • Isabelle, L.; André, L. Quantitative Prediction of Microbial Behaviour During Food Processing Using an Integrated Modelling Approach: A Review. Int. J. Refrig. 2006, 29, 968–984. DOI:10.1016/j.ijrefrig.2006.04.008.
  • Pérez-Rodríguez, F.; Valero, A. Predictive Microbiology in Foods. Springer: New York, USA, 2013. DOI:10.1007/978-1-4614-5520-2.
  • Chen, X. D.; Patel, K. C. Micro-Organism Inactivation During Drying of Small Droplets or thin-layer slabs - A Critical Review of existing Kinetics Models and an Appraisal of the Drying Rate Dependent Model. J. Food Eng. 2007, 82, 1–10. DOI:10.1016/j.jfoodeng.2006.12.013.
  • Fu, N.; Woo, M. W.; Selomulya, C.; Chen, X. D. Inactivation of Lactococcus Lactis Ssp. Cremoris Cells in a Droplet During Convective Drying. Biochem. Eng. J. 2013, 79, 46–56. DOI:10.1016/j.bej.2013.06.015.
  • Lievense, L. C.; Verbeek, M. A. M.; Taekema, T.; Meerdink, G.; Riet, K. V. Modelling the Inactivation of Lactobacillus Plantarum During a Drying Process. Chemical Engineering Science 1992, 47, 87–97. DOI:10.1016/0009-2509(92)80203-O.
  • Valdramidis, V. P.; Geeraerd, A. H.; Gaze, J. E.; Kondjoyan, A.; Boyd, A. R.; Shaw, H. L.; Impe, J. F. V. Quantitative Description of Listeria Monocytogenes Inactivation Kinetics with Temperature and Water Activity as the Influencing Factors; Model Prediction and Methodological Validation on Dynamic Data. J. Food Eng. 2006, 76, 79–88. DOI:10.1016/j.jfoodeng.2005.05.025.
  • Ghandi, A.; Powell, I.; Chen, X. D.; Adhikari, B. Drying Kinetics and Survival Studies of Dairy Fermentation Bacteria in Convective Air Drying Environment using Single Droplet Drying. J. Food Eng. 2012, 110, 405–417. DOI:10.1016/j.jfoodeng.2011.12.031.
  • Valero, A.; Cejudo, M.; García-Gimeno, R. M. Inactivation Kinetics for Salmonella Enteritidis in Potato Omelet using Microwave Heating Treatments. Food Control 2014, 43, 175–182. DOI:10.1016/j.foodcont.2014.03.009.
  • Tan, D. T.; Poh, P. E.; Chin, S. K. Microorganism Preservation by Convective Air-Drying — A review. Drying Technol. 2018, 36(7), 764–779.
  • Bayrock, D.; Ingledew, W. M. Fluidized Bed Drying of Baker’s Yeast: Moisture Levels, Drying Rates, and Viability Changes During Drying. Food Res. Int. 1997, 30, 407–415. DOI:10.1016/S0963-9969(98)00003-9.
  • Perdana, J.; Bereschenko, L.; Fox, M. B.; Kuperus, J. H.; Kleerebezem, M.; Boom, R. M.; Schutyser, M. A. I. Dehydration and Thermal Inactivation of Lactobacillus Plantarum WCFS1: Comparing Single Droplet Drying to Spray and Freeze Drying. Food Res. Int. 2013, 54, 1351–1359. DOI:10.1016/j.foodres.2013.09.043.
  • Foerst, P.; Kulozik, U. Modelling the Dynamic Inactivation of the Probiotic Bacterium L. Paracasei Ssp. Paracasei During a low-temperature Drying Process based on Stationary Data in Concentrated Systems. Food Bioprocess Technol. 2012, 5, 2419–2427. DOI:10.1007/s11947-011-0560-4.
  • Huang, H.; Brooks, M. S.-L.; Huang, H.-J.; Chen, X. D. Inactivation Kinetics of Yeast Cells During Infrared Drying. Drying Technol. 2009, 27, 1060–1068. DOI:10.1080/07373930903218453.
  • Li, X.; Lin, S.; Chen, X. D.; Chen, L.; Pearce, D. Inactivation Kinetics of Probiotic Bacteria During the Drying of Single Milk Droplets. Drying Techno. 2006, 24, 695–701. DOI:10.1080/07373930600684890.
  • Marechal, P. A.; De, I. M.; Poirier, I.; Gervais, P.; Proce, Â. The Importance of the Kinetics of Application of Physical Stresses on the Viability of Microorganisms: Significance for Minimal Food Processing. Trends Food Sci. Technol. 1999, 10, 15–20.
  • Chen, X. D.; Patel, K. C. Biological Changes During Food Dyring Processes. In Drying Technologies in Food Processing; Arun, S. M., Xiao, D. C., Eds.; Blackwell Publishing: UK, 2008; pp 90–112.
  • Kuts, P. S.; Tutova, E. G. Fundamentals of Drying of Microbiological Materials. Drying Technol. 1983, 2, 171–201. DOI:10.1080/07373938308959824.
  • Majs, v. B.; Zwietering, M. Experimental design, data processing and model fitting in predictive modelling. In Modelling Microorganisms in Food ; Brul, S., van Gerwen, S., Zwietering, M., Eds.; Woodhead Publishing Limited: Cambridge, England, 2007; pp. 22–43. DOI:10.1533/9781845692940.1.22.
  • Pérez-Rodríguez, F.; Valero, A. Experimental Design and Data Generation. In Predictive Microbiology in Foods; Richard W. Hartel, Ed.; New York: Springer, 2013; 18.
  • Simal, S.; Femenia, A.; Garau, M. C.; Rosselló, C. Use of Exponential, page’s and Diffusional Models to Simulate the Drying Kinetics of Kiwi Fruit. J. Food Eng. 2005, 66, 323–328. DOI:10.1016/j.jfoodeng.2004.03.025.
  • Meerdink, G.; van’t Riet, K. Prediction of Product Quality During Spray Drying. Food Bioprod. Process. 1995, 73(4), 165–170. DOI:10.134/J.0960-3085
  • Aryani, D. C.; Zwietering, M. H.; den Besten, H. M. The Effect of Different Matrices on the Growth Kinetics and Heat Resistance of Listeria Monocytogenes and Lactobacillus Plantarum. Int. J. Food Microbiol. 2016, 238, 326–337. DOI:10.1016/j.ijfoodmicro.2016.09.012.
  • Purlis, E.; Salvadori, V. O. Bread Baking as a Moving Boundary Problem. Part 1: Mathematical Modelling. J. Food Eng. 2009, 91, 428–433. DOI:10.1016/j.jfoodeng.2008.09.037.
  • Zhang, L.; Putranto, A.; Zhou, W.; Boom, R. M.; Schutyser, M. A. I.; Chen, X. D. Miniature Bread Baking as a Timesaving Research Approach and Mathematical Modeling of Browning Kinetics. Food Bioprod. Process. 2016, 100, 401–411. DOI:10.1016/j.fbp.2016.08.007.
  • Ansari, M. I. A.; Datta, A. K. An Overview of Sterilization methods for Packaging Materials used in Aseptic Packaging Systems. Food Bioprod. Process. 2003, 81, 57–65. DOI:http://dx.doi.org/10.1205/096030803765208670.
  • Xing, Y.; Li, A.; Felker, D. L.; Burggraf, L. W. Nanoscale Structural and Mechanical Analysis of Bacillus Anthracis Spores Inactivated with Rapid Dry Heating. Appl. Environ. Microbiol. 2014, 80, 1739–1749. DOI:10.1128/AEM.03483-13.
  • Broeckx, G.; Vandenheuvel, D.; Claes, I. J. J.; Lebeer, S.; Kiekens, F. Drying Techniques of Probiotic Bacteria as an Important step Towards the Development of Novel Pharmabiotics. Int. J. Pharm. 2016, 505, 303–318. DOI:10.1016/j.ijpharm.2016.04.002.
  • Schutyser, M. A. I.; Perdana, J.; Boom, R. M. Single Droplet Drying for Optimal Spray Drying of Enzymes and Probiotics. Trends Food Sci. Technol. 2012, 27, 73–82. DOI:http://dx.doi.org/10.1016/j.tifs.2012.05.006.
  • Gong, P.; Zhang, L.; Han, X.; Shigwedha, N.; Song, W.; Yi, H.; Du, M.; Cao, C. Injury Mechanisms of Lactic Acid Bacteria Starter Cultures During Spray Drying: A Review. Drying Technol. 2014, 32, 793–800. DOI:10.1080/07373937.2013.860458.
  • Peleg, M. Advanced Quantitative Microbiology for Foods and Biosystems: Models for Predicting Growth and Inactivation. Boca Raton: CRC Press, Taylor & Francis Group, LLC, 2006. DOI:10.1201/9781420005370.
  • Cerf, O.; Davey, K. R.; Sadoudi, A. K. Thermal inactivation of Bacteria: A New Predictive Model for the Combined Effect of Three Environmental Factors: Temperature, pH and Water Activity. Food Res. Int. 1996, 29, 219–226. DOI:10.1016/0963-9969(96)00039-7.