Publication Cover
Drying Technology
An International Journal
Volume 38, 2020 - Issue 16
1,056
Views
44
CrossRef citations to date
0
Altmetric
Articles

Cold plasma pretreatment – A novel approach to improve the hot air drying characteristics, kinetic parameters, and nutritional attributes of shiitake mushroom

ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 2134-2150 | Received 24 Jul 2019, Accepted 19 Oct 2019, Published online: 04 Nov 2019

References

  • Jiang, T.; Jahangir, M. M.; Jiang, Z.; Lu, X.; Ying, T. Influence of UV-C Treatment on Antioxidant Capacity, Antioxidant Enzyme Activity and Texture of Postharvest Shiitake (Lentinus edodes) Mushrooms during Storage. Postharvest Biol. Technol. 2010, 56, 209–215.
  • Tian, Y.; Zhao, Y.; Huang, J.; Zeng, H.; Zheng, B. Effects of Different Drying Methods on the Product Quality and Volatile Compounds of Whole Shiitake Mushrooms. Food Chem. 2016, 197, 714–722.
  • Jiang, T.; Feng, L.; Li, J. Changes in Microbial and Postharvest Quality of Shiitake Mushroom (Lentinus edodes) Treated with Chitosan–Glucose Complex Coating under Cold Storage. Food Chem. 2012, 131, 780–786.
  • Shishir, M.; Taip, F.; Saifullah, M.; Yong, S.; Aziz, N.; Talib, R. Changes in Quality Attributes of Pink Guava (Psidium guajava) Powder with Respect to Different Drying Techniques and Maltodextrin Concentrations. Int. Food Res. J. 2018, 25, 1625–1632.
  • Qiu, G.; Wang, D.; Song, X.; Deng, Y.; Zhao, Y. Degradation Kinetics and Antioxidant Capacity of Anthocyanins in Air-Impingement Jet Dried Purple Potato Slices. Food Res. Int. 2018, 105, 121–128.
  • Shishir, M. R. I.; Taip, F. S.; Saifullah, M.; Aziz, N. A.; Talib, R. A. Effect of Packaging Materials and Storage Temperature on the Retention of Physicochemical Properties of Vacuum Packed Pink Guava Powder. Food Pack. Shelf Life. 2017, 12, 83–90. DOI: 10.1016/j.fpsl.2017.04.003.
  • Shishir, M. R. I.; Chen, W. Trends of Spray Drying: A Critical Review on Drying of Fruit and Vegetable Juices. Trends Food. Sci. Technol. 2017, 65, 49–67.
  • Wang, J.; Yang, X.-H.; Mujumdar, A. S.; Fang, X.-M.; Zhang, Q.; Zheng, Z.-A.; Gao, Z.-J.; Xiao, H.-W. Effects of High-Humidity Hot Air Impingement Blanching (HHAIB) Pretreatment on the Change of Antioxidant Capacity, the Degradation Kinetics of Red Pigment, Ascorbic Acid in Dehydrated Red Peppers during Storage. Food Chem. 2018, 259, 65–72. DOI: 10.1016/j.foodchem.2018.03.123.
  • Horuz, E.; Jaafar, H. J.; Maskan, M. Ultrasonication as Pretreatment for Drying of Tomato Slices in a Hot Air–Microwave Hybrid Oven. Drying Technol. 2017, 35, 849–859. DOI: 10.1080/07373937.2016.1222538.
  • Zhao, D.; Wei, J.; Hao, J.; Han, X.; Ding, S.; Yang, L.; Zhang, Z. Effect of Sodium Carbonate Solution Pretreatment on Drying Kinetics, Antioxidant Capacity Changes, and Final Quality of Wolfberry (Lycium barbarum) during Drying. LWT - Food Sci. Technol. 2019, 99, 254–261. DOI: 10.1016/j.lwt.2018.09.066.
  • Kamal, M. M.; Ali, M. R.; Rahman, M. M.; Shishir, M. R. I.; Yasmin, S.; Sarker, M. S. H. Effects of Processing Techniques on Drying Characteristics, Physicochemical Properties and Functional Compounds of Green and Red Chilli (Capsicum annum L.) Powder. J. Food Sci. Technol. 2019, 56, 3185–3194. DOI: 10.1007/s13197-019-03733-6.
  • Xie, L.; Mujumdar, A. S.; Fang, X.-M.; Wang, J.; Dai, J.-W.; Du, Z.-L.; Xiao, H.-W.; Liu, Y.; Gao, Z.-J. Far-Infrared Radiation Heating Assisted Pulsed Vacuum Drying (FIR-PVD) of Wolfberry (Lycium barbarum L.): Effects on Drying Kinetics and Quality Attributes. Food Bioprod. Process. 2017, 102, 320–331. DOI: 10.1016/j.fbp.2017.01.012.
  • Raja, K. S.; Taip, F. S.; Azmi, M. M. Z.; Shishir, M. R. I. Effect of Pre-Treatment and Different Drying Methods on the Physicochemical Properties of Carica papaya L. Leaf Powder. J. Saudi Soc. Agric. Sci. 2019, 18, 150–156.
  • Zhao, Y.-Y.; Yi, J.-Y.; Bi, J.-F.; Chen, Q.-Q.; Zhou, M.; Zhang, B. Improving of Texture and Rehydration Properties by Ultrasound Pretreatment for Infrared-Dried Shiitake Mushroom Slices. Drying Technol. 2019, 37, 352–362.
  • Lemus-Mondaca, R.; Miranda, M.; Grau, A. A.; Briones, V.; Villalobos, R.; Vega-Gálvez, A. Effect of Osmotic Pretreatment on Hot Air Drying Kinetics and Quality of Chilean Papaya (Carica pubescens). Drying Technol. 2009, 27, 1105–1115. DOI: 10.1080/07373930903221291.
  • Liu, Y.; Sun, Y.; Yu, H.; Yin, Y.; Li, X.; Duan, X. Hot Air Drying of Purple-Fleshed Sweet Potato with Contact Ultrasound Assistance. Drying Technol. 2017, 35, 564–576.
  • Muhammad, A. I.; Li, Y.; Liao, X.; Liu, D.; Ye, X.; Chen, S.; Hu, Y.; Wang, J.; Ding, T. Effect of Dielectric Barrier Discharge Plasma on Background Microflora and Physicochemical Properties of Tiger Nut Milk. Food Control 2019, 96, 119–127. DOI: 10.1016/j.foodcont.2018.09.010.
  • Muhammad, A. I.; Liao, X.; Cullen, P. J.; Liu, D.; Xiang, Q.; Wang, J.; Chen, S.; Ye, X.; Ding, T. Effects of Nonthermal Plasma Technology on Functional Food Components. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1379–1394. DOI: 10.1111/1541-4337.12379.
  • Zhang, X.-L.; Zhong, C.-S.; Mujumdar, A. S.; Yang, X.-H.; Deng, L.-Z.; Wang, J.; Xiao, H.-W. Cold Plasma Pretreatment Enhances Drying Kinetics and Quality Attributes of Chili Pepper (Capsicum annuum L.). J. Food Eng. 2019, 241, 51–57. DOI: 10.1016/j.jfoodeng.2018.08.002.
  • Misra, N. N.; Patil, S.; Moiseev, T.; Bourke, P.; Mosnier, J. P.; Keener, K. M.; Cullen, P. J. In-Package Atmospheric Pressure Cold Plasma Treatment of Strawberries. J. Food Eng. 2014, 125, 131–138. DOI: 10.1016/j.jfoodeng.2013.10.023.
  • Thirumdas, R.; Kothakota, A.; Annapure, U.; Siliveru, K.; Blundell, R.; Gatt, R.; Valdramidis, V. P. Plasma Activated Water (PAW): Chemistry, Physico-Chemical Properties, Applications in Food and Agriculture. Trends Food Sci. Technol. 2018, 77, 21–31. DOI: 10.1016/j.tifs.2018.05.007.
  • Xu, Y.; Tian, Y.; Ma, R.; Liu, Q.; Zhang, J. Effect of Plasma Activated Water on the Postharvest Quality of Button Mushrooms, Agaricus bisporus. Food Chem. 2016, 197, 436–444. DOI: 10.1016/j.foodchem.2015.10.144.
  • Ma, R.; Wang, G.; Tian, Y.; Wang, K.; Zhang, J.; Fang, J. Non-Thermal Plasma-Activated Water Inactivation of Food-Borne Pathogen on Fresh Produce. J. Hazard Mater. 2015, 300, 643–651. DOI: 10.1016/j.jhazmat.2015.07.061.
  • Doymaz, I. Drying of Potato Slices: Effect of Pretreatments and Mathematical Modeling. J. Food Process. Preserv. 2012, 36, 310–319. DOI: 10.1111/j.1745-4549.2011.00594.x.
  • Vásquez-Parra, J. E.; Ochoa-Martínez, C. I.; Bustos-Parra, M. Effect of Chemical and Physical Pretreatments on the Convective Drying of Cape Gooseberry Fruits (Physalis peruviana). J. Food Eng. 2013, 119, 648–654. DOI: 10.1016/j.jfoodeng.2013.06.037.
  • Azeez, L.; Adebisi, S. A.; Oyedeji, A. O.; Adetoro, R. O.; Tijani, K. O. Bioactive Compounds’ Contents, Drying Kinetics and Mathematical Modelling of Tomato Slices Influenced by Drying Temperatures and Time. J. Saudi Soc. Agric. Sci. 2019, 18, 120–126. DOI: 10.1016/j.jssas.2017.03.002.
  • Dinani, S.; Hamdami, N.; Shahedi, M.; Havet, M. Mathematical Modeling of Hot Air/Electrohydrodynamic (EHD) Drying Kinetics of Mushroom Slices. Energ. Convers. Manage. 2014, 86, 70–80. DOI: 10.1016/j.enconman.2014.05.010.
  • Karasu, S.; Kilicli, M.; Baslar, M.; Arici, M.; Sagdic, O.; Karaagacli, M. Dehydration Kinetics and Changes of Bioactive Compounds of Tulip and Poppy Petals as a Natural Colorant under Vacuum and Oven Conditions. J. Food Process. Preserv. 2015, 39, 2096–2106. DOI: 10.1111/jfpp.12453.
  • Keneni, Y. G.; Hvoslef-Eide, A. K.; Marchetti, J. M. Mathematical Modelling of the Drying Kinetics of Jatropha curcas L. seeds. Ind. Crop. Prod. 2019, 132, 12–20. DOI: 10.1016/j.indcrop.2019.02.012.
  • Ren, F.; Perussello, C. A.; Zhang, Z.; Gaffney, M. T.; Kerry, J. P.; Tiwari, B. K. Enhancement of Phytochemical Content and Drying Efficiency of Onions (Allium cepa L.) through Blanching. J. Sci. Food Agric. 2018, 98, 1300–1309. DOI: 10.1002/jsfa.8594.
  • Tian, Y.; Wu, S.; Zhao, Y.; Zhang, Q.; Huang, J.; Zheng, B. Drying Characteristics and Processing Parameters for Microwave-Vacuum Drying of Kiwifruit (Actinidia deliciosa) Slices. J. Food Process. Preserv. 2015, 39, 2620–2629. DOI: 10.1111/jfpp.12512.
  • Wang, Y.; Li, X.; Chen, X.; Li, B.; Mao, X.; Miao, J.; Zhao, C.; Huang, L.; Gao, W. Effects of Hot Air and Microwave-Assisted Drying on Drying Kinetics, Physicochemical Properties, and Energy Consumption of Chrysanthemum. Chem. Eng. Process. Process Intens. 2018, 129, 84–94. DOI: 10.1016/j.cep.2018.03.020.
  • Sridhar, D.; Madhu, G. M. Drying Kinetics and Mathematical Modeling of Casuarina equisetifolia Wood Chips at Various Temperatures. Period. Polytech. Chem. Eng. 2015, 59, 288–295. DOI: 10.3311/PPch.7855.
  • Faal, S.; Tavakoli, T.; Ghobadian, B. Mathematical Modelling of Thin Layer Hot Air Drying of Apricot with Combined Heat and Power Dryer. J. Food Sci. Technol. 2015, 52, 2950–2957. DOI: 10.1007/s13197-014-1331-9.
  • Sehrawat, R.; Nema, P. K.; Kaur, B. P. Quality Evaluation and Drying Characteristics of Mango Cubes Dried Using Low-Pressure Superheated Steam, Vacuum and Hot Air Drying Methods. LWT - Food Sci. Technol. 2018, 92, 548–555. DOI: 10.1016/j.lwt.2018.03.012.
  • Ju, H.-Y.; Law, C.-L.; Fang, X.-M.; Xiao, H.-W.; Liu, Y.-H.; Gao, Z.-J. Drying Kinetics and Evolution of the Sample’s Core Temperature and Moisture Distribution of Yam Slices (Dioscorea alata L.) during Convective Hot-Air Drying. Drying Technol. 2016, 34, 1297–1306. DOI: 10.1080/07373937.2015.1105814.
  • Papoutsis, K.; Pristijono, P.; Golding, J. B.; Stathopoulos, C. E.; Bowyer, M. C.; Scarlett, C. J.; Vuong, Q. V. Effect of Vacuum-Drying, Hot Air-Drying and Freeze-Drying on Polyphenols and Antioxidant Capacity of Lemon (Citrus limon) Pomace Aqueous Extracts. Int. J. Food Sci. Technol. 2017, 52, 880–887. DOI: 10.1111/ijfs.13351.
  • Nguyen, K. Q.; Vuong, Q. V.; Nguyen, M. H.; Roach, P. D. The Effects of Drying Conditions on Bioactive Compounds and Antioxidant Activity of the Australian Maroon Bush, Scaevola spinescens. J. Food Process. Preserv. 2018, 42, 1–10.
  • Bao, T.; Li, Y.; Xie, J.; Sun, C.; Li, X.; Pu, Y.; Chen, W. Systematic Evaluation of Bioactive Components and Antioxidant Capacity of Some New and Common Bayberry Cultivars Using an in Vitro Gastrointestinal Digestion Method. Food Res. Int. 2018, 103, 326–334.
  • Chen, W.; Su, H.; Xu, Y.; Bao, T.; Zheng, X. Protective Effect of Wild Raspberry (Rubus hirsutus Thunb.) Extract against Acrylamide-Induced Oxidative Damage Is Potentiated after Simulated Gastrointestinal Digestion. Food Chem. 2016, 196, 943–952.
  • Bao, T.; Xu, Y.; Gowd, V.; Zhao, J.; Xie, J.; Liang, W.; Chen, W. Systematic Study on Phytochemicals and Antioxidant Activity of Some New and Common Mulberry Cultivars in China. J. Funct. Foods. 2016, 25, 537–547. DOI: 10.1016/j.jff.2016.07.001.
  • Zhang, Z.; Liu, Z.; Liu, C.; Li, D.; Jiang, N.; Liu, C. Effects of Ultrasound Pretreatment on Drying Kinetics and Quality Parameters of Button Mushroom Slices. Drying Technol. 2016, 34, 1791–1800.
  • Li, H.; Xie, L.; Ma, Y.; Zhang, M.; Zhao, Y.; Zhao, X. Effects of Drying Methods on Drying Characteristics, Physicochemical Properties and Antioxidant Capacity of Okra. LWT - Food Sci. Technol. 2019, 101, 630–638.
  • Alibas, I. Determination of Drying Parameters, Ascorbic Acid Contents and Color Characteristics of Nettle Leaves during Microwave-, Air- and Combined Microwave–Air-Drying. J. Food Process. Eng. 2010, 33, 213–233.
  • Hosseinizand, H.; Sokhansanj, S.; Lim, C. J. Studying the Drying Mechanism of Microalgae Chlorella vulgaris and the Optimum Drying Temperature to Preserve Quality Characteristics. Drying Technol. 2018, 36, 1049–1060. DOI: 10.1080/07373937.2017.1369986.
  • Guo, X-H.; Xia, C-Y.; Tan, Y-R.; Chen, L.; Ming, J. Mathematical Modeling and Effect of Various Hot-Air Drying on Mushroom (Lentinus edodes). J. Integr. Agric. 2014, 13, 207–216.
  • da Silva, W. P.; e Silva, C. M. D. P. S.; Gama, F. J. A.; Gomes, J. P. Mathematical Models to Describe Thin-Layer Drying and to Determine Drying Rate of Whole Bananas. J. Saudi Soc. Agric. Sci. 2014, 13, 67–74. DOI: 10.1016/j.jssas.2013.01.003.
  • Palamanit, A.; Musengimana Sugira, A.; Soponronnarit, S.; Prachayawarakorn, S.; Tungtrakul, P.; Kalkan, F.; Raghavan, V. Study on Quality Attributes and Drying Kinetics of Instant Parboiled Rice Fortified with Turmeric Using Hot Air and Microwave-Assisted Hot Air Drying. Drying Technol. 2019, 1–14. DOI: 10.1080/07373937.2019.1579735.
  • Cao, Y.; Tao, Y.; Zhu, X.; Han, Y.; Li, D.; Liu, C.; Liao, X.; Show, P. L. Effect of Microwave and Air-Borne Ultrasound-Assisted Air Drying on Drying Kinetics and Phytochemical Properties of Broccoli Floret. Drying Technol. 2019, 1–16. DOI: 10.1080/07373937.2019.1662437.
  • Mghazli, S.; Ouhammou, M.; Hidar, N.; Lahnine, L.; Idlimam, A.; Mahrouz, M. Drying Characteristics and Kinetics Solar Drying of Moroccan Rosemary Leaves. Renew. Energy. 2017, 108, 303–310. DOI: 10.1016/j.renene.2017.02.022.
  • Xie, L.; Zheng, Z.-A.; Mujumdar, A. S.; Fang, X.-M.; Wang, J.; Zhang, Q.; Ma, Q.; Xiao, H.-W.; Liu, Y.-H.; Gao, Z.-J. Pulsed Vacuum Drying (PVD) of Wolfberry: Drying Kinetics and Quality Attributes. Drying Technol. 2018, 36, 1501–1514. DOI: 10.1080/07373937.2017.1414055.
  • Zhang, Z.; Lv, G.; Pan, H.; Wu, Y.; Fan, L. Effects of Different Drying Methods and Extraction Condition on Antioxidant Properties of Shiitake (Lentinus edodes). Food Sci. Technol. Res. 2009, 15, 547–552.
  • Zhang, N.; Chen, H.; Zhang, Y.; Ma, L.; Xu, X. Comparative Studies on Chemical Parameters and Antioxidant Properties of Stipes and Caps of Shiitake Mushroom as Affected by Different Drying Methods. J. Sci. Food Agric. 2013, 93, 3107–3113. DOI: 10.1002/jsfa.6151.
  • Wang, J.; Vanga, S. K.; Raghavan, V. High-Intensity Ultrasound Processing of Kiwifruit Juice: Effects on the Ascorbic Acid, Total Phenolics, Flavonoids and Antioxidant Capacity. LWT - Food Sci. Technol. 2019, 107, 299–307. DOI: 10.1016/j.lwt.2019.03.024.
  • Craft, B. D.; Kerrihard, A. L.; Amarowicz, R.; Pegg, R. B. Phenol-Based Antioxidants and the in Vitro Methods Used for Their Assessment. Comprehen. Rev. Food Sci. Food Saf. 2012, 11, 148–173. DOI: 10.1111/j.1541-4337.2011.00173.x.
  • Choe, E.; Min, D. B. Mechanisms of Antioxidants in the Oxidation of Foods. Compr. Rev. Food Sci. F. 2009, 8, 345–358. DOI: 10.1111/j.1541-4337.2009.00085.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.