Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 10
187
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Protective effect of crop by-products on Lactobacillus gasseri H87 during freeze-drying and storage

, , , , , & show all
Pages 1595-1604 | Received 25 Sep 2022, Accepted 09 Jan 2023, Published online: 22 Jan 2023

References

  • Zárate, G.; Nader-Macias, M. E. Viability and Biological Properties of Probiotic Vaginal Lactobacilli after Lyophilization and Refrigerated Storage into Gelatin Capsules. Process Biochem. 2006, 41, 1779–1785. DOI: 10.1016/j.procbio.2006.03.024.
  • Ocaña, V.; Nader-Macías, M. E. Adhesion of Lactobacillus Vaginal Strains with Probiotic Properties to Vaginal Epithelial Cells. Biocell 2001, 25, 265–273.
  • Helander, I. M.; Mattila-Sandholm, T. Fluorometric Assessment of Gram-Negative Bacterial Permeabilization. J. Appl. Microbiol. 2000, 88, 2:213–219. DOI: 10.1046/j.1365-2672.2000.00971.x.
  • Zheng, R.; Su, S.; Zhou, H.; Yan, H.; Ye, J.; Zhao, Z.; et al. Antioxidant/Antihyperglycemic Activity of Phenolics from Sugarcane (Saccharum Officinarum L.) Bagasse and Identification by UHPLC-HR-TOFMS. Ind. Crops Prod. 2017, 101, 104–114.
  • Dorota, M. Ż.; Patrycja, R.; Małgorzata, P. The Effect of Freeze-Drying and Storage on Lysozyme Activity, Lactoferrin Content, Superoxide Dismutase Activity, Total Antioxidant Capacity and Fatty Acid Profile of Freeze-Dried Human Milk. Drying Technol. 2022, 40, 615–625.
  • Gregor, R. Modulating the Vaginal Microbiome: The Need for a Bridge between Science and Practice. Semin. Reprod. Med. 2014, 32, 028–034. DOI: 10.1055/s-0033-1361820.
  • Tomás, M. S. J.; Gregorio, P. R. D.; Terraf, M. C. L.; Nader-Macías, M. E. F. Encapsulation and Subsequent Freeze-Drying of Lactobacillus reuteri CRL 1324 for Its Potential Inclusion in Vaginal Probiotic Formulations. Eur. J. Pharm. Sci. 2015, 79, 87–95. DOI: 10.1016/j.ejps.2015.08.010.
  • Fonseca, F.; Girardeau, A.; Passot, S. Freeze-Drying of Lactic Acid Bacteria: A Stepwise Approach for Developing a Freeze-Drying Protocol Based on Physical Properties. Methods Mol. Biol. 2021, 2180, 703–719.
  • Nowak, D.; Jakubczyk, E. The Freeze-Drying of Foods-The Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials. Foods (Basel, Switzerland) 2020, 9, 1488. DOI: 10.3390/foods9101488.
  • Baokun, L.; Fengwei, T.; Xiaoming, L.; Jianxin, Z.; Hao, Z.; Wei, C. Effects of Cryoprotectants on Viability of Lactobacillus reuteri CICC6226. Appl. Microbiol. Biotechnol. 2011, 92, 609–616.
  • Castro, H. P.; Teixeira, P. M.; Kirby, R. Evidence of Membrane Damage in Lactobacillus bulgaricus following Freeze Drying. J. Appl. Microbiol. 1997, 82, 87–94. DOI: 10.1111/j.1365-2672.1997.tb03301.x.
  • Zhang, Y. H.; Huo, G. C. Guo,G.Study on the Damage of Lactic Acid Bacteria following Freeze Drying. Food Ferment. Ind. 2007, 01, 142–146.
  • Li, M. H.; Shang, Y. N.; Huo, L. W.; Chen, J.; Chen, X. N.; Xing, Y. N.Recent Progress in Understanding Injury Mechanisms of Lactic Acid Bacteria during Freeze-Drying. Food Sci. 2018, 3919, 273–279.
  • Velly, H.; Bouix, M.; Passot, S.; Penicaud, C.; Beinsteiner, H.; Ghorbal, S.; Lieben, P.; Fonseca, F. Cyclopropanation of Unsaturated Fatty Acids and Membrane Rigidification Improve the Freeze-Drying Resistance of Lactococcus lactis Subsp. lactis TOMSC161. Appl. Microbiol. Biotechnol. 2015, 99, 907–918. DOI: 10.1007/s00253-014-6152-2.
  • Chonticha, R.; Phanvasri, S.; Panadda, B.; Benjamas, T.; Kamonnut, S. Optimization of Cryoprotectants for Freeze-Dried Potential Probiotic;Enterococcus faecalis;and Evaluation of Its Storage Stability. Drying Technol. 2022, 40, 2283–2292. DOI: 10.1080/07373937.2021.1931294.
  • Ayala-Zavala, J. F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J. A.; Siddiqui, M. W.; Dávila-Aviña, J. E.; González-Aguilar, G. A. Agro-Industrial Potential of Exotic Fruit Byproducts as a Source of Food Additives. Food Res. Int. 2011, 44, 1866–1874. DOI: 10.1016/j.foodres.2011.02.021.
  • Araújo, C. M.; Sampaio, K. B.; Menezes, F. N. D. D.; Almeida, E. T. D. C.; Lima, M. D. S.; Viera, V. B.; Garcia, E. F.; Gómez-Zavaglia, A.; de Souza, E. L.; de Oliveira, M. E. G.; et al. Protective Effects of Tropical Fruit Processing Coproducts on Probiotic Lactobacillus Strains during Freeze-Drying and Storage. Microorganisms 2020, 8, 96. DOI: 10.3390/microorganisms8010096.
  • Siaterlis, A.; Deepika, G.; Charalampopoulos, D. Effect of Culture Medium and Cryoprotectants on the Growth and Survival of Probiotic Lactobacilli during Freeze Drying. Lett. Appl. Microbiol. 2009, 48, 295–301. DOI: 10.1111/j.1472-765X.2008.02529.x.
  • Hye, G. D.; Woo, H. J.; Hee, K. J.; Woo, K. J. Skin-Whitening and anti-Wrinkle Effects of Bioactive Compounds Isolated from Peanut Shell Using Ultrasound-Assisted Extraction. Molecules 2021, 26, 1231. DOI: 10.3390/molecules26051231.
  • El-Helw, N. O.; El-Gendy, A. O.; El-Gebaly, E.; Hassan, H. M.; Rateb, M. E.; El-Nesr, K. A. Characterization of Natural Bioactive Compounds Produced by Isolated Bacteria from Compost of Aromatic Plants. J. Appl. Microbiol. 2019, 126, 443–451. DOI: 10.1111/jam.14085.
  • Jiage, M.; Wei, Y.; Juncai, H.; Xiue, H.; Hong, S.; Ying, L. Characterization and Production Optimization of a Broad-Spectrum Bacteriocin Produced by Lactobacillus casei KLDS 1.0338 and Its Application in Soybean Milk Biopreservation. Int. J. Food Prop. 2020, 23, 677–692.
  • Hussain, A.; Ahsan, F. The Vagina as a Route for Systemic Drug Delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society 2005, 103, 301–313. DOI: 10.1016/j.jconrel.2004.11.034.
  • Cheng, Z.; Yan, X.; Wu, J.; Weng, P.; Wu, Z. Effects of Freeze Drying in Complex Lyoprotectants on the Survival, and Membrane Fatty Acid Composition of Lactobacillus plantarum L1 and Lactobacillus fermentum L2. Cryobiology 2022, 105, 1–9. DOI: 10.1016/j.cryobiol.2022.01.003.
  • Claudio, M.; Hansjörg, G. U.; Eriksson Anna, S.; Lindberg, I.; Lauritsen, H.; Nørholm Morten, H. Increasing the Permeability of Escherichia coli Using MAC13243. Sci. Rep. 2017, 71, 17629. DOI: 10.1038/s41598-017-17772-6.
  • Bloom Seth, M.; Mafunda Nomfuneko, A.; Woolston Benjamin, M.; Hayward Matthew, R.; Frempong Josephine, F.; Abai Aaron, B.; et al. Cysteine Dependence of Lactobacillus iners is a Potential Therapeutic Target for Vaginal Microbiota Modulation. Nat. Microbiol. 2022, 7, 434–450. DOI: 10.1038/s41564-022-01070-7.
  • Dobson, A.; Cotter Paul, D.; Paul, R. R.; Hill, C. Bacteriocin Production: A Probiotic Trait? Appl. Environ. Microbiol. 2012, 78, 1–6. DOI: 10.1128/AEM.05576-11.
  • Patricia, A.-S.; Manuel, M.-L.; Dongdong, M.; Kuipers Oscar, P. Bacteriocins of Lactic Acid Bacteria: Extending the Family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951. DOI: 10.1007/s00253-016-7343-9.
  • Müller, A.; Münch, D.; Schmidt, Y.; Reder-Christ, K.; Schiffer, G.; Bendas, G.; et al. Lipodepsipeptide Empedopeptin Inhibits Cell Wall Biosynthesis through Ca2+-Dependent Complex Formation with Peptidoglycan Precursors. J. Biol. Chem. 2012, 287, 20270–20280. DOI: 10.1074/jbc.M112.369561.
  • King, V. A.-E.; Su, J. T. Dehydration of Lactobacillus acidophilus. Process Biochem. 1993, 28, 47–52. DOI: 10.1016/0032-9592(94)80035-9.
  • Abadias, M.; Teixidó, N.; Usall, J.; Benabarre, A.; Viñas, I. Viability, Efficacy, and Storage Stability of Freeze-Dried Biocontrol Agent Candida Sake Using Different Protective and Rehydration Media. J. Food Prot. 2001, 64, 856–861. DOI: 10.4315/0362-028X-64.6.856.
  • Bao, Z. Z.; Xu, J. Y.; Jiang, H. Y.; Huang, Z. Y. Optimization Beer Yeast Strain JX-07 Production GSH through Increase Oxygen Stress and Yeast Cell Membrane Permeability. Pharm. Biotechnol. 2009, 16, 60–63. DOI: 10.19526/j.cnki.1005-8915.2009.01.013.
  • Olszewska, M. A.; Gędas, A.; Simões, M. Antimicrobial Polyphenol-Rich Extracts: Applications and Limitations in the Food Industry. Food Res. Int. 2020, 134, 109214. DOI: 10.1016/j.foodres.2020.109214.
  • Maiara, d C. L.; Marciane, M.; Marcos, D. S. L.; Paiva, d S. C.; Daniel, D. J.; Leite, d S. E. Phenolic-Rich Extracts from Acerola, Cashew Apple and Mango by-Products Cause Diverse Inhibitory Effects and Cell Damages on Enterotoxigenic Escherichia coli. Lett. Appl. Microbiol. 2021, 75, 565–577. DOI: 10.1111/lam.13586.
  • Stephan, D.; Silva, A.-P. M. D.; Bisutti, I. L. Optimization of a Freeze-Drying Process for the Biocontrol Agent Pseudomonas Spp. and Its Influence on Viability, Storability and Efficacy. Biol. Control 2016, 94, 74–81. DOI: 10.1016/j.biocontrol.2015.12.004.
  • Trelea, I. C.; Fonseca, F.; Passot, S. Dynamic Modeling of the Secondary Drying Stage of Freeze Drying Reveals Distinct Desorption Kinetics for Bound Water. Drying Technol. 2016, 34, 335–345. DOI: 10.1080/07373937.2015.1054509.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.