Publication Cover
Computers in the Schools
Interdisciplinary Journal of Practice, Theory, and Applied Research
Volume 39, 2022 - Issue 4
317
Views
0
CrossRef citations to date
0
Altmetric
Articles

Pre-Service Mathematics Teachers’ Experience with a Dynamic Geometry Environment Whilst Reasoning in Relation to Locus Problems: A Detailed Look at Strategies

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abramovich, S., & Norton, A. (2006). Equations with parameters: A locus approach. Journal of Computers in Mathematics and Science Teaching, 25(1), 5–28.
  • Açıkgül, K., & Aslaner, R. (2015). Öğretmen adaylarının kağıt-kalem ve dinamik geometri yazılımı kullanarak geometrik yer problemlerini çözüm süreçlerinin incelenmesi [An investigation of prospective teachers’ problem-solving processes regarding locus problems in paper-pencil and dynamic geometry environment]. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 2015(2), 468–512. doi:10.14520/adyusbd.96576
  • Arzarello, F., & Sabena, C. (2011). Semiotic and theoretic control in argumentation and proof activities. Educational Studies in Mathematics, 77(2-3), 189–206. doi:10.1007/s10649-010-9280-3
  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt Für Didaktik Der Mathematik, 34(3), 66–72. doi:10.1007/BF02655708
  • Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253. doi:10.1007/s10758-010-9169-3
  • Baki, A. (1996). Matematik öğretiminde bilgisayar her şey midir? [Is the computer everything in mathematics teaching?]. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 12(12). https://dergipark.org.tr/en/download/article-file/88157.
  • Baltacı, S., & Yıldız, A. (2018). Geometrik yer problemlerinin yazılım destekli çözümleri esnasında tahmin et-gözle-açıkla (TGA) stratejisinin kullanımı. [The use of guess-by-eye-explanatory strategy during software-assisted solutions of geometric location problems]. Kırşehir Eğitim Fakültesi Dergisi, 19(3), 1873–1890. doi:10.29299/kefad.2018.19.03.003
  • Barron, B. (2000). Achieving coordination in collaborative problem-solving groups. Journal of the Learning Sciences, 9(4), 403–436. doi:10.1207/S15327809JLS0904_2
  • Christou, C., & Papageorgiou, E. (2007). A framework of mathematics inductive reasoning. Learning and Instruction, 17(1), 55–66. doi:10.1016/j.learninstruc.2006.11.009
  • Christou, C., Mousoulides, N., Pittalis, M., & Pitta-Pantazi, D. (2005). Problem solving and problem posing in a dynamic geometry environment. The Mathematics Enthusiast, 2(2), 125–143. doi:10.54870/1551-3440.1029
  • De Villiers, M. (2006). Some pitfalls of dynamic geometry software. Learning and Teaching Mathematics, 4, 46–52. 10.10520/EJC20746
  • Department for Education (DfE). (2013). The national curriculum in England. Key stages 1 and 2 framework document. Department for Education. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/425601/PRIMARY_national_curriculum.pdf.
  • Dogruer, S. S., & Akyuz, D. (2020). Mathematical practices of eighth graders about 3D shapes in an argumentation, technology, and design-based classroom environment. International Journal of Science and Mathematics Education, 18(8), 1485–1505. doi:10.1007/s10763-019-10028-x
  • Drijvers, P. (2015). Digital technology in mathematics education: Why it works (or doesn’t). In Selected regular lectures from the 12th international congress on mathematical education. (pp. 135–151)Springer.
  • Drijvers, P., Kieran, C., Mariotti, M. A., Ainley, J., Andresen, M., Chan, Y. C., Dana-Picard, T., Gueudet, G., Kidron, I., Leung, A., & Meagher, M. (2009). Integrating technology into mathematics education: Theoretical perspectives. In Hoyles, C. & Lagrange, JB. (Eds), Mathematics education and technology-rethinking the terrain. New ICMI Study Series, vol 13 (pp. 89–132). Springer. doi:10.1007/978-1-4419-0146-0_7.
  • Fahlgren, M., & Brunström, M. (2014). A model for task design with focus on exploration, explanation, and generalization in a dynamic geometry environment. Technology, Knowledge and Learning, 19(3), 287–315. doi:10.1007/s10758-014-9213-9
  • Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139–162. doi:10.1007/BF01273689
  • Gómez-Chacón, I. M., & Escribano, J., (2014). Geometric Locus activities in a dynamic geometry system. Non-iconic visualization and instrumental genesis. Revista Latinoamericana de Investigación en Matemática Educativa, 17(4(II)), 361–383. doi:10.12802/relime.13.17418
  • González, G., & Herbst, P. G. (2009). Students’ conceptions of congruency through the use of dynamic geometry software. International Journal of Computers for Mathematical Learning, 14(2), 153–182. doi:10.1007/s10758-009-9152-z
  • Gulkilik, H. (2020). Analyzing pre-service secondary mathematics teachers’ prompts in dynamic geometry environment tasks. Interactive Learning Environments, 1–16. doi:10.1080/10494820.2020.1758729
  • Güven, B., & Karataş, İ. (2009). The effect of dynamic geometry software (cabri) on pre-service elementary mathematics teachers’ achievement about locus problems. Ankara Universitesi Egitim Bilimleri Fakultesi Dergisi, 42(1), 001–031. doi:10.1501/Egifak_0000001135
  • Hall, J., & Chamblee, G. (2013). Teaching algebra and geometry with GeoGebra: Preparing pre-service teachers for middle grades/secondary mathematics classrooms. Computers in the Schools, 30(1–2), 12–29. doi:10.1080/07380569.2013.76427
  • Hanna, G. (1998). Proof as explanation in geometry. Focus on Learning Problems in Mathematics, 20, 4–13.
  • Hanna, G. (2014). Mathematical proof, argumentation, and reasoning. In S.Lerman (Ed.), Encyclopedia of mathematics education (pp. 404–408). Springer.
  • Healy, L., & Hoyles, C. (2002). Software tools for geometrical problem solving: Potentials and pitfalls. International Journal of Computers for Mathematical Learning, 6(3), 235–256. doi:10.1023/A:1013305627916
  • Hemmerling, E. M. (1959). Mathematical analysis. McGraw-Hill.
  • Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. Second Handbook of Research on Mathematics Teaching and Learning, 1, 371–404.
  • Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164–192. doi:10.2307/30034955
  • Hollebrands, K. F., Conner, A., & Smith, R. C. (2010). The nature of arguments provided by college geometry students with access to technology while solving problems. Journal for Research in Mathematics Education, 41(4), 324–350. doi:10.5951/jresematheduc.41.4.0324
  • Hollebrands, K., & Okumuş, S. (2017). Prospective mathematics teachers’ processes for solving optimization problems using cabri 3D. Digital Experiences in Mathematics Education, 3(3), 206–232. doi:10.1007/s40751-017-0033-0
  • Hölzl, R. (2001). Using dynamic geometry software to add contrast to geometric situations–A case study. International Journal of Computers for Mathematical Learning, 6(1), 63–86. doi:10.1023/A:1011464425023
  • Jeannotte, D., & Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96(1), 1–16. doi:10.1007/s10649-017-9761-8
  • Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48(4), 63–85. doi:10.1007/BF02300500
  • Krummheuer, G. (1995). The ethnography of argumentation. In P.Cobb & H.Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229–269)Lawrence Erlbaum Associates.
  • Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom: Two episodes and related theoretical abductions. The Journal of Mathematical Behavior, 26(1), 60–82. doi:10.1016/j.jmathb.2007.02.001
  • Laborde, C. (2000). Dynamic geometry environments as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44(1/2), 151–161. doi:10.1023/A:1012793121648
  • Laborde, C., & Sträßer, R. (2010). Place and use of new technology in the teaching of mathematics: ICMI activities in the past 25 years. ZDM, 42(1), 121–133. doi:10.1007/s11858-009-0219-z
  • Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. ZDM, 43(3), 325–336. doi:10.1007/s11858-011-0329-2
  • Leung, A., Baccaglini-Frank, A., & Mariotti, M. A. (2013). Discernment of invariants in dynamic geometry environments. Educational Studies in Mathematics, 84(3), 439–460. doi:10.1007/s10649-013-9492-4
  • Lopez-Real, F., & Leung, A. (2006). Dragging as a conceptual tool in dynamic geometry environments. International Journal of Mathematical Education in Science and Technology, 37(6), 665–679. doi:10.1080/00207390600712539
  • Magnani, L. (2005). An abductive theory of scientific reasoning. Semiotica, 2005(153 - 1/4), 261–286. doi:10.1515/semi.2005.2005.153-1-4.261
  • Marrades, R., & Gutiérrez, Á. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44(1/2), 87–125. doi:10.1023/A:1012785106627
  • Martin, W. G., Carter, J., Forster, S., Howe, R., Kader, G., Kepner, H., Quander, J. R., & Valdez, P. (2009). Focus in high school mathematics: Reasoning and sense making. National Council of Teachers of Mathematics.
  • Ministry of National Education (MoNE). (2018). Secondary education Mathematics lesson (9th, 10th, 11th and 12th grades) curriculum. http://mufredat.meb.gov.tr
  • Miragliotta, E., & Baccaglini-Frank, A. E. (2021). Enhancing the skill of geometric prediction using dynamic geometry. Mathematics, 9(8), 821. doi:10.3390/math9080821
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. NCTM.
  • Olivero, F., & Robutti, O. (2007). Measuring in dynamic geometry environments as a tool for conjecturing and proving. International Journal of Computers for Mathematical Learning, 12(2), 135–156. doi:10.1007/s10758-007-9115-1
  • Olsson, J. (2018). The contribution of reasoning to the utilization of feedback from software when solving mathematical problems. International Journal of Science and Mathematics Education, 16(4), 715–735. doi:10.1007/s10763-016-9795-x
  • Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed?Educational Studies in Mathematics, 66(1), 23–41. doi:10.1007/s10649-006-9057-x
  • Pedemonte, B., & Reid, D. (2011). The role of abduction in proving processes. Educational Studies in Mathematics, 76(3), 281–303. doi:10.1007/s10649-010-9275-0
  • Peirce, C. S. (1960). Collected papers. Harvard University Press.
  • Rivera, F. D., & Becker, J. R. (2007). Abduction–induction (generalization) processes of elementary majors on figural patterns in algebra. The Journal of Mathematical Behavior, 26(2), 140–155. doi:10.1016/j.jmathb.2007.05.001
  • Ruthven, K., Hennessy, S., & Deaney, R. (2008). Constructions of dynamic geometry: A study of the interpretative flexibility of educational software in classroom practice. Computers & Education, 51(1), 297–317. doi:10.1016/j.compedu.2007.05.013
  • Sinclair, N., & Robutti, O. (2013). Technology and the role of proof: The case of dynamic geometry. Third international handbook of mathematics education (pp. 571–596). Springer. doi:10.1007/978-1-4614-4684-2_19
  • Sinclair, N., Bussi, M. G. B., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, K. (2016). Recent research on geometry education: An ICME-13 survey team report. ZDM, 48(5), 691–719. doi:10.1007/s11858-016-0796-6
  • Tatar, E., & Zengin, Y. (2016). Conceptual understanding of definite integral with Geogebra. Computers in the Schools, 33(2), 120–132. doi:10.1080/07380569.2016.1177480
  • Toulmin, S. E. (2003). The uses of argument. Cambridge University Press.
  • Trocki, A., & Hollebrands, K. (2018). The development of a framework for assessing dynamic geometry task quality. Digital Experiences in Mathematics Education, 4(2-3), 110–138. doi:10.1007/s40751-018-0041-8
  • Ubuz, B., Dincer, S., Bulbul, A. (2012). Argumentation in undergraduate math courses: A study on proof generation. In Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 163–170.).
  • Weber, K. (2008). How mathematicians determine if an argument is a valid proof. Journal for Research in Mathematics Education, 39(4), 431–459. doi:10.5951/jresematheduc.39.4.0431
  • Weissman, S., Stupel, M., & Sigler, A. (2018). Finding the location of the axes, the vertices and the foci of a parabola, an ellipse and a hyperbola using a straightedge and a compass. Electronic Journal of Mathematics and Technology, 12(2), 278–292.
  • Yanik, H. B. (2013). Learning geometric translations in a dynamic geometry environment. Education & Science/Egitim ve Bilim, 38(168), 272–288. http://egitimvebilim.ted.org.tr/index.php/EB/article/viewFile/1585/595
  • Yao, X., & Manouchehri, A. (2019). Middle school students’ generalizations about properties of geometric transformations in a dynamic geometry environment. The Journal of Mathematical Behavior, 55, 100703. doi:10.1016/j.jmathb.2019.04.002
  • Yao, X., & Manouchehri, A. (2020). Folding back in students’ construction of mathematical generalizations within a dynamic geometry environment. Mathematics Education Research Journal, 1–28. doi:10.1007/s13394-020-00343-w
  • Yigit-Koyunkaya, M., & Bozkurt, G. (2019). Matematik Öğretmen Adaylarının Tasarladığı GeoGebra Etkinliklerinin Matematiksel Derinlik ve Teknolojik Eylem Açısından İncelenmesi [An examination of GeoGebra tasks designed by pre-service mathematics teachers in terms of mathematical depth and technological action. ]. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 13(2), 515–544. doi:10.17522/balikesirnef.573521
  • Zambak, V. S., & Tyminski, A. M. (2017). A case study on specialised content knowledge development with dynamic geometry software: The analysis of influential factors and technology beliefs of three pre-service middle grades mathematics teachers. Mathematics Teacher Education and Development, 19(1), 82–106. https://files.eric.ed.gov/fulltext/EJ1152743.pdf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.