142
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Introducing of novel class of pyrano[2,3-c]pyrazole-5-carbonitrile analogs with potent antimicrobial activity, DNA gyrase inhibition, and prominent pharmacokinetic and CNS toxicity profiles supported by molecular dynamic simulation

, ORCID Icon, , ORCID Icon, , , , , , , , , & show all
Received 13 Jun 2023, Accepted 20 Aug 2023, Published online: 03 Sep 2023

References

  • Abd El-Lateef, H. M., Elmaaty, A. A., Abdel Ghany, L. M. A., Abdel-Aziz, M. S., Zaki, I., & Ryad, N. (2023). Design and synthesis of 2-(4-bromophenyl)quinoline-4-carbohydrazide derivatives via molecular hybridization as novel microbial DNA-gyrase inhibitors. ACS Omega, 8(20), 17948–17965. https://doi.org/10.1021/acsomega.3c01156
  • Abd-El-Aziz, A. S., Alsaggaf, A. T., Okasha, R. M., Ahmed, H. E. A., Bissessur, R., Abdelghani, A. A., & Afifi, T. H. (2016). Antimicrobial and antitumor screening of fluorescent 5,7-dihydroxy-4-propyl-2H-chromen-2-one derivatives with docking studies. ChemistrySelect, 1(15), 5025–5033. https://doi.org/10.1002/slct.201600789
  • Afifi, T. H., Okasha, R. M., Ahmed, H. E., Ilaš, J., Saleh, T., & Abd-El-Aziz, A. (2017). Structure-activity relationships and molecular docking studies of chromene and chromene based azo chromophores: A novel series of potent antimicrobial and anticancer agents. EXCLI Journal, 16, 868.
  • Afifi, T. H., Okasha, R. M., Alsherif, H., Ahmed, H. E., & Abd-El-Aziz, A. S. (2017). Design, synthesis, and docking studies of 4H-chromene and chromene based azo chromophores: a novel series of potent antimicrobial and anticancer agents. Current Organic Synthesis, 14(7), 1036–1051. https://doi.org/10.2174/1570179414666170519150520
  • Ahmed, H. E. A., Ihmaid, S. K., Omar, A. M., Shehata, A. M., Rateb, H. S., Zayed, M. F., Ahmed, S., & Elaasser, M. M. (2018). Design, synthesis, molecular docking of new lipophilic acetamide derivatives affording potential anticancer and antimicrobial agents. Bioorganic Chemistry, 76, 332–342. https://doi.org/10.1016/j.bioorg.2017.11.019
  • Al-Harbi, L. M., Al-Harbi, E. A., Okasha, R. M., El-Eisawy, R. A., El-Nassag, M. A. A., Mohamed, H. M., Fouda, A. M., Elhenawy, A. A., Mora, A., El-Agrody, A. M., & El-Mawgoud, H. K. A. (2023). Discovery of benzochromene derivatives first example with dual cytotoxic activity against the resistant cancer cell MCF-7/ADR and inhibitory effect of the P-glycoprotein expression levels. Journal of Enzyme Inhibition and Medicinal Chemistry, 38(1), 2155814. https://doi.org/10.1080/14756366.2022.2155814
  • An, J., Zuo, G. Y., Hao, X. Y., Wang, G. C., & Li, Z. S. (2011). Antibacterial and synergy of a flavanonol rhamnoside with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 18(11), 990–993. https://doi.org/10.1016/j.phymed.2011.02.013
  • Balasubramaniyan, S., Irfan, N., Senthilkumar, C., Umamaheswari, A., & Puratchikody, A. (2020). The synthesis and biological evaluation of virtually designed fluoroquinolone analogs against fluoroquinolone-resistant Escherichia coli intended for UTI treatment. New Journal of Chemistry, 44(31), 13308–13318. https://doi.org/10.1039/D0NJ00657B
  • Ballatore, C., Huryn, D. M., & Smith, 3rd, A. B. (2013). Carboxylic acid (bio)isosteres in drug design. ChemMedChem, 8(3), 385–395. https://doi.org/10.1002/cmdc.201200585
  • Barrett, M. J., & Login, I. S. (2009). Gemifloxacin-associated neurotoxicity presenting as encephalopathy. The Annals of Pharmacotherapy, 43(4), 782–784. https://doi.org/10.1345/aph.1L621
  • Bax, B. D., Chan, P. F., Eggleston, D. S., Fosberry, A., Gentry, D. R., Gorrec, F., Giordano, I., Hann, M. M., Hennessy, A., Hibbs, M., Huang, J., Jones, E., Jones, J., Brown, K. K., Lewis, C. J., May, E. W., Saunders, M. R., Singh, O., Spitzfaden, C. E., … Gwynn, M. N. (2010). Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 466(7309), 935–940. https://doi.org/10.1038/nature09197
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, IN., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Association for Computing Machinery, Tampa, Florida, pp. 84. https://doi.org/10.1145/1188455.1188544
  • Brogan, D. M., & Mossialos, E. (2016). A critical analysis of the review on antimicrobial resistance report and the infectious disease financing facility. Globalization and Health, 12, 8.
  • Bush, K., & Pucci, M. J. (2011). New antimicrobial agents on the horizon. Biochemical Pharmacology, 82(11), 1528–1539. https://doi.org/10.1016/j.bcp.2011.07.077
  • Carion, T. W., Ebrahim, A. S., Alluri, S., Ebrahim, T., Parker, T., Burns, J., Sosne, G., & Berger, E. A. (2020). Antimicrobial effects of thymosin beta-4 and ciprofloxacin adjunctive therapy in pseudomonas aeruginosa induced keratitis. International Journal of Molecular Sciences, 21(18), 6840. https://doi.org/10.3390/ijms21186840
  • Coni, P., Piras, M., Mateddu, A., Piludu, M., Orru, G., Scano, A., Cabras, T., Piras, V., Lachowicz, J. I., Jaremko, M., Faa, G., Castagnola, M., & Pichiri, G. (2020). Thymosin β4 cytoplasmic/nuclear translocation as a new marker of cellular stress. A Caco2 case study. RSC Advances, 10(21), 12680–12688. https://doi.org/10.1039/c9ra10365a
  • Demirci, F., & Başer, K. H. C. (2002). Bioassay techniques for drug development by Atta-ur-Rahman, M. Iqbal Choudhary (HEJRIC, University of Karachi, Pakistan), William J. Thomsen (Areana Pharmaceuticals, San Diego, CA). Harwood Academic Publishers, Amsterdam, The Netherlands. 2001. xii + 223 pp. 15.5 × 23.5 cm. $79.00. ISBN 90-5823-051-1. Journal of Natural Products, 65(7), 1086–1087. https://doi.org/10.1021/np020725b
  • Domagala, J. M. (1994). Structure-activity and structure-side-effect relationships for the quinolone antibacterials. The Journal of Antimicrobial Chemotherapy, 33(4), 685–706. https://doi.org/10.1093/jac/33.4.685
  • El-Dakdouki, M. H., & Erhardt, P. W. (2012). Analogue-based drug discovery: Contributions to medicinal chemistry principles and drug design strategies. Microtubule stabilizers as a case in point (Special Topic Article). Pure and Applied Chemistry, 84(7), 1479–1542. https://doi.org/10.1351/PAC-CON-12-02-13
  • El-Gamal, K. M., El-Morsy, A. M., Saad, A. M., Eissa, I. H., & Alswah, M. (2018). Synthesis, docking, QSAR, ADMET and antimicrobial evaluation of new quinoline-3-carbonitrile derivatives as potential DNA-gyrase inhibitors. Journal of Molecular Structure, 1166, 15–33. https://doi.org/10.1016/j.molstruc.2018.04.010
  • El-Gamal, M. I., & Oh, C. H. (2010). Current status of carbapenem antibiotics. Current Topics in Medicinal Chemistry, 10(18), 1882–1897. https://doi.org/10.2174/156802610793176639
  • El-Shershaby, M. H., El-Gamal, K. M., Bayoumi, A. H., El-Adl, K., Ahmed, H. E. A., & Abulkhair, H. S. (2021). Synthesis, antimicrobial evaluation, DNA gyrase inhibition, and in silico pharmacokinetic studies of novel quinoline derivatives. Archiv der Pharmazie, 354, 2000277.
  • FDA Approved Drugs; CenterWatch: Boston. (2013). http://www.centerwatch.com/drug-information/fda-approvals.
  • Fleeman, R., LaVoi, T. M., Santos, R. G., Morales, A., Nefzi, A., Welmaker, G. S., Medina-Franco, J. L., Giulianotti, M. A., Houghten, R. A., & Shaw, L. N. (2015). Combinatorial libraries as a tool for the discovery of novel, broad-spectrum antibacterial agents targeting the ESKAPE pathogens. Journal of Medicinal Chemistry, 58(8), 3340–3355. https://doi.org/10.1021/jm501628s
  • Fouda, A. M., Hassan, A. H., Eliwa, E. M., Ahmed, H. E. A., Al-Dies, A.-A. M., Omar, A. M., Nassar, H. S., Halawa, A. H., Aljuhani, N., & El-Agrody, A. M. (2020). Targeted potent antimicrobial benzochromene-based analogues: Synthesis, computational studies, and inhibitory effect against 14α-Demethylase and DNA Gyrase. Bioorganic Chemistry, 105, 104387. https://doi.org/10.1016/j.bioorg.2020.104387
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Gaillard, H., Muse, T. G., & Aguilera, A. (2015). Replication stress and cancer. Nature Reviews. Cancer, 15(5), 276–e289. https://doi.org/10.1038/nrc3916
  • Guiol, C., Ledoussal, C., & Surgé, J. M. (1993). Pharmacological properties of a new fluoroquinolone on the central nervous system in rodents. Arzneimittel-Forschung, 43(1), 56–60.
  • Hammad, A., Abutaleb, N. S., Elsebaei, M. M., Norvil, A. B., Alswah, M., Ali, A. O., Abdel-Aleem, J. A., Alattar, A., Bayoumi, S. A., Gowher, H., Seleem, M. N., & Mayhoub, A. S. (2019). From phenylthiazoles to phenylpyrazoles: Broadening the antibacterial spectrum toward carbapenem-resistant bacteria. Journal of Medicinal Chemistry, 62(17), 7998–8010. https://doi.org/10.1021/acs.jmedchem.9b00720
  • Hawash, M., Jaradat, N., Abualhasan, M., Şüküroğlu, M. K., Qaoud, M. T., Kahraman, D. C., Daraghmeh, H., Maslamani, L., Sawafta, M., Ratrout, A., & Issa, L. (2023). Design, synthesis, molecular docking studies and biological evaluation of thiazole carboxamide derivatives as COX inhibitors. BMC Chemistry, 17(1), 11. https://doi.org/10.1186/s13065-023-00924-3
  • Hogberg, L. D., Heddini, A., & Cars, O. (2010). The global need for effective antibiotics: Challenges and recent advances. Trends in Pharmacological Sciences, 31(11), 509–515. https://doi.org/10.1016/j.tips.2010.08.002
  • Ibrahim, N. M., Fahim, S. H., Hassan, M., Farag, A. E., & Georgey, H. H. (2022). Design and synthesis of ciprofloxacin-sulfonamide hybrids to manipulate ciprofloxacin pharmacological qualities: Potency and side effects. European Journal of Medicinal Chemistry, 228, 114021. https://doi.org/10.1016/j.ejmech.2021.114021
  • Jakopin, Ž., Ilaš, J., Barančoková, M., Brvar, M., Tammela, P., Sollner Dolenc, M., Tomašič, T., & Kikelj, D. (2017). Discovery of substituted oxadiazoles as a novel scaffold for DNA gyrase inhibitors. European Journal of Medicinal Chemistry, 130, 171–184. https://doi.org/10.1016/j.ejmech.2017.02.046
  • Kamdar, N. R., Haveliwala, D. D., Mistry, P. T., & Patel, S. K. (2011). Synthesis and evaluation of in vitro antitubercular activity and antimicrobial activity of some novel 4H-chromeno[2,3-d]pyrimidine via 2-amino-4-phenyl-4H-chromene-3-carbonitriles. Medicinal Chemistry Research, 20(7), 854–864. https://doi.org/10.1007/s00044-010-9399-x
  • Khayat, M. T., Ahmed, H. E. A., Omar, A. M., Muhammad, Y. A., Mohammad, K. A., Malebari, A. M., Khayyat, A. N., Halawa, A. H., Abulkhair, H. S., Al-Karmalawy, A. A., Almaghrabi, M., Alharbi, M., Aljahdali, A. S., & El-Agrody, A. M. (2023). A novel class of phenylpyrazolone-sulphonamides rigid synthetic anticancer molecules selectively inhibit the isoform IX of carbonic anhydrases guided by molecular docking and orbital analyses. Journal of Biomolecular Structure & Dynamics, 41, 1–19. https://doi.org/10.1080/07391102.2023.2188957
  • Kijewska, M., Sharfalddin, A. A., Jaremko, Ł., Cal, M., Setner, B., Siczek, M., Stefanowicz, P., Hussien, M. A., Emwas, A.-H., & Jaremko, M. (2021). Lossen rearrangement of p-toluenesulfonates of N-oxyimides in basic condition, theoretical study, and molecular docking. Frontiers in Chemistry, 9, 662533. https://doi.org/10.3389/fchem.2021.662533
  • Lachowicz, J. I., Jaremko, M., Jaremko, L., Pichiri, G., Coni, P., & Piludu, M. (2019). Metal coordination of thymosin β4: Chemistry and possible implications. Coordination Chemistry Reviews, 396, 117–123. https://doi.org/10.1016/j.ccr.2019.06.008
  • Lachowicz, J. I., Pichiri, G., Piludu, M., Fais, S., Orrù, G., Congiu, T., Piras, M., Faa, G., Fanni, D., Dalla Torre, G., Lopez, X., Chandra, K., Szczepski, K., Jaremko, L., Ghosh, M., Emwas, A.-H., Castagnola, M., Jaremko, M., Hannappel, E., & Coni, P. (2022). Thymosin β4 is an endogenous iron chelator and molecular switcher of ferroptosis. International Journal of Molecular Sciences, 23(1), 551. https://doi.org/10.3390/ijms23010551
  • Lentz, S. R. C., Chheda, P. R., Oppegard, L. M., Towle, T. R., Kerns, R. J., & Hiasa, H. (2019). The C7-aminomethylpyrrolidine group rescues the activity of a thio-fluoroquinolone. Biochimie, 160, 24–27. https://doi.org/10.1016/j.biochi.2019.02.002
  • Levine, C., Hiasa, H., & Marians, K. J. (1998). DNA gyrase and topoisomerase IV: Biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochimica et Biophysica Acta, 1400(1–3), 29–43. https://doi.org/10.1016/s0167-4781(98)00126-2
  • Mahnashi, M. H., El-Senduny, F. F., Alshahrani, M. A., & Abou-Salim, M. A. (2022). Design, synthesis, and biological evaluation of a novel VEGFR-2 inhibitor based on a 1,2,5-oxadiazole-2-oxide scaffold with MAPK signaling pathway inhibition. Pharmaceuticals (Basel, Switzerland), 15(2), 246. https://doi.org/10.3390/ph15020246
  • Malebari, A. M., Ahmed, H. E. A., Ihmaid, S. K., Omar, A. M., Muhammad, Y. A., Althagfan, S. S., Aljuhani, N., Sayed, A.-A. A. A. El., Halawa, A. H., El-Tahir, H. M., Turkistani, S. A., Almaghrabi, M., Aljohani, A. K. B., El-Agrody, A. M., & Abulkhair, H. S. (2023). Exploring the dual effect of novel 1,4-diarylpyranopyrazoles as antiviral and anti-inflammatory for the management of SARS-CoV-2 and associated inflammatory symptoms. Bioorganic Chemistry, 130, 106255. https://doi.org/10.1016/j.bioorg.2022.106255
  • Maxwell, A., Burton, N. P., & O'Hagan, N. (2006). High-throughput assays for DNA gyrase and other topoisomerases. Nucleic Acids Research, 34(15), e104. https://doi.org/10.1093/nar/gkl504
  • Molecular Operating Environment (MOE). (2012). M. Molecular Operating Environment (MOE) Chemical Computing Group, Quebec, Canada. Retrieved February 30, 2013, from http://www.chemcomp.com.
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
  • Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
  • Murray, P. R., & Baron, E. J. (2003). M. American Society for, Manual of clinical microbiology. ASM Press.
  • Musa, A., Ihmaid, S. K., Hughes, D. L., Said, M. A., Abulkhair, H. S., El-Ghorab, A. H., Abdelgawad, M. A., Shalaby, K., Shaker, M. E., Alharbi, K. S., Alotaibi, N. H., Kays, D. L., Taylor, L. J., Parambi, D. G. T., Alzarea, S. I., Al-Karmalawy, A. A., Ahmed, H. E. A., & El-Agrody, A. M. (2023). The anticancer and EGFR-TK/CDK-9 dual inhibitory potentials of new synthetic pyranopyrazole and pyrazolone derivatives: X-ray crystallography, in vitro, and in silico mechanistic investigations. Journal of Biomolecular Structure & Dynamics, 41, 1–15. https://doi.org/10.1080/07391102.2023.2167000
  • Mustaev, A., Malik, M., Zhao, X., Kurepina, N., Luan, G., Oppegard, L. M., Hiasa, H., Marks, K. R., Kerns, R. J., Berger, J. M., & Drlica, K. (2014). Fluoroquinolone-gyrase-DNA complexes: Two modes of drug binding. The Journal of Biological Chemistry, 289(18), 12300–12312. https://doi.org/10.1074/jbc.M113.529164
  • Omar, A. M., Alswah, M., Ahmed, H. E. A., Bayoumi, A. H., El-Gamal, K. M., El-Morsy, A., Ghiaty, A., Afifi, T. H., Sherbiny, F. F., Mohammed, A. S., & Mansour, B. A. (2020). Antimicrobial screening and pharmacokinetic profiling of novel phenyl-[1,2,4]triazolo[4,3-a]quinoxaline analogues targeting DHFR and E. coli DNA gyrase B. Bioorganic Chemistry, 96, 103656. https://doi.org/10.1016/j.bioorg.2020.103656
  • Omar, A. M., Ihmaid, S., Habib, E. E., Althagfan, S. S., Ahmed, S., Abulkhair, H. S., & Ahmed, H. E. A. (2020). The rational design, synthesis, and antimicrobial investigation of 2-Amino-4-Methylthiazole analogues inhibitors of GlcN-6-P synthase. Bioorganic Chemistry, 99, 103781. https://doi.org/10.1016/j.bioorg.2020.103781
  • Omar, F. A., Abelrasoul, M., Sheha, M. M., Hassan, H. Y., & Ibrahiem, Y. M. (2018). Synthesis, antibacterial activity and molecular docking of substituted naphthyridines as potential DNA gyrase inhibitors. ChemistrySelect, 3(9), 2604–2612. https://doi.org/10.1002/slct.201800108
  • Okasha, R. M., Alsehli, M., Ihmaid, S., Althagfan, S. S., El-Gaby, M. S. A., Ahmed, H. E. A., & Afifi, T. H. (2019). First example of Azo-Sulfa conjugated chromene moieties: Synthesis, characterization, antimicrobial assessment, docking simulation as potent class I histone deacetylase inhibitors and antitumor agents. Bioorganic Chemistry, 92, 103262. https://doi.org/10.1016/j.bioorg.2019.103262
  • Papp-Wallace, K. M., Endimiani, A., Taracila, M. A., & Bonomo, R. A. (2011). Carbapenems: Past, present, and future. Antimicrobial Agents and Chemotherapy, 55(11), 4943–4960. https://doi.org/10.1128/AAC.00296-11
  • Patani, G. A., & LaVoie, E. J. (1996). Bioisosterism: A rational approach in drug design. Chemical Reviews, 96(8), 3147–3176. https://doi.org/10.1021/cr950066q
  • Rajanarendar, E., Nagi Reddy, M., Rama Krishna, S., Rama Murthy, K., Reddy, Y. N., & Rajam, M. V. (2012). Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolyl pyrimido[4,5-b]quinolines and isoxazolyl chromeno[2,3-d]pyrimidin-4-ones. European Journal of Medicinal Chemistry, 55, 273–283. https://doi.org/10.1016/j.ejmech.2012.07.029
  • Reddy, G. M., Kumari, A. K., Reddy, V. H., & Garcia, J. R. (2020). Novel pyranopyrazole derivatives comprising a benzoxazole core as antimicrobial inhibitors: Design, synthesis, microbial resistance and machine aided results. Bioorganic Chemistry, 100, 103908. https://doi.org/10.1016/j.bioorg.2020.103908
  • Rezki, N., Al-Sodies, S. A., Ahmed, H. E. A., Ihmaid, S., Messali, M., Ahmed, S., & Aouad, M. R. (2019). A novel dicationic ionic liquids encompassing pyridinium hydrazone-phenoxy conjugates as antimicrobial agents targeting diverse high resistant microbial strains. Journal of Molecular Liquids, 284, 431–444. https://doi.org/10.1016/j.molliq.2019.04.010
  • Rodriguez, L. G., Duque, A., Castellsague, J., Gutthann, S. P., & Stricker, B. C. (1999). A cohort study on the risk of acute liver injury among users of ketoconazole and other antifungal drugs. British Journal of Clinical Pharmacology, 48(6), 847–852. https://doi.org/10.1046/j.1365-2125.1999.00095.x
  • Romesberg, F. E., & Craney, A. (2016). Discovery of novel antibacterials. Bioorganic & Medicinal Chemistry, 24(24), 6225–6226. https://doi.org/10.1016/j.bmc.2016.11.046
  • Rusu, A., Munteanu, A. C., Arbănași, E. M., & Uivarosi, V. (2023). Overview of side-effects of antibacterial fluoroquinolones: New drugs versus old drugs, a step forward in the safety profile? Pharmaceutics, 15(3), 804. https://doi.org/10.3390/pharmaceutics15030804
  • Schmuck, G., Schürmann, A., & Schlüter, G. (1998). Determination of the excitatory potencies of fluoroquinolones in the central nervous system by an in vitro model. Antimicrobial Agents and Chemotherapy, 42(7), 1831–1836. https://doi.org/10.1128/AAC.42.7.1831
  • Seleem, M. A., Disouky, A. M., Mohammad, H., Abdelghany, T. M., Mancy, A. S., Bayoumi, S. A., Elshafeey, A., El-Morsy, A., Seleem, M. N., & Mayhoub, A. S. (2016). Second-generation phenylthiazole antibiotics with enhanced pharmacokinetic properties. Journal of Medicinal Chemistry, 59(10), 4900–4912. https://doi.org/10.1021/acs.jmedchem.6b00233
  • Slobbe, P., Ruijter, E., & Orru, R. V. A. (2012). Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm, 3(10), 1189–1218. https://doi.org/10.1039/c2md20089a
  • Smith, D. A. (2010). Metabolism, pharmacokinetics and toxicity of functional groups: Impact of chemical building blocks on ADMET (1st ed., Vol. 1, pp. 201–219). RSC Publishing, Drug Discovery.
  • Subburaju, S., & Benes, F. M. (2012). Induction of the GABA cell phenotype: An in vitro model for studying neurodevelopmental disorders. PLoS One. 7(3), e33352. https://doi.org/10.1371/journal.pone.0033352
  • Sultana, R., Ali, A., Twala, C., Mehandi, R., Rana, M., Yameen, D., Abid, M., Rahisuddin. (2023). Synthesis, spectral characterization of pyrazole derived Schiff base analogs: Molecular dynamic simulation, antibacterial and DNA binding studies. Journal of Biomolecular Structure & Dynamics, 41, 1–28. https://doi.org/10.1080/07391102.2023.2179541
  • Sun, J., Lv, P. C., Yin, Y., Yuan, R. J., Ma, J., & Zhu, H. L. (2013). Synthesis, structure and antibacterial activity of potent DNA gyrase inhibitors: N'-benzoyl-3-(4-bromophenyl)-1H-pyrazole-5-carbohydrazide derivatives. PLoS One, 8(7), e69751. https://doi.org/10.1371/journal.pone.0069751
  • Thomas, R. J. (1994). Neurotoxicity of antibacterial therapy. Southern Medical Journal, 87(9), 869–874. https://doi.org/10.1097/00007611-199409000-00001
  • Tomašič, T., Mirt, M., Barancokova, M., Ilas, J., Zidar, N., Tammela, P., & Kikelj, D. (2017). Design, synthesis and biological evaluation of 4, 5-dibromo-N-(thiazol-2-yl)- 1H-pyrrole-2-carboxamide derivatives as novel DNA gyrase inhibitors. Bioorganic & Medicinal Chemistry, 25(1), 338–349. https://doi.org/10.1016/j.bmc.2016.10.038
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. Jr. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Wang, Y., Du, Y., & Huang, N. (2018). A survey of the role of nitrile groups in protein-ligand interactions. Future Medicinal Chemistry, 10(23), 2713–2728. https://doi.org/10.4155/fmc-2018-0252
  • WHO Report on Cancer. (2020). https://apps.who.int/iris/rest/bitstreams/1267643/retrieve1-160.
  • Wiegand, I., Hilpert, K., & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163–175. https://doi.org/10.1038/nprot.2007.521
  • Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., … Wilson, M. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Zaghary, W. A., Anwar, M. M., Abd El-Karim, S. S., Awad, G., Hussein, E. A., Mahfouz, G. K., & Design, N. M. (2021). Synthesis and molecular docking of new benzimidazole derivatives of potential antimicrobial activity as DNA gyrase and topoisomerase IV inhibitors. Egyptian Journal of Chemistry, 64, 3817–3839.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.