1,718
Views
0
CrossRef citations to date
0
Altmetric
Review

A comprehensive review on vanillin: its microbial synthesis, isolation and recovery

, , , &
Pages 22-49 | Received 17 Jul 2020, Accepted 25 Nov 2020, Published online: 28 Jan 2021

References

  • Achterholt, S., H. Priefert, and A. Steinbüchel. 2000. Identification of Amycolatopsis sp. Strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Appl. Microbiol. Biotechnol. 54 (6):799–807. doi:10.1007/s002530000431.
  • Arya, S. S., M. M. Sharma, R. K. Das, J. Rookes, D. Cahill, and S. K. Lenka. 2019. Vanillin mediated green synthesis and application of gold nanoparticles for reversal of antimicrobial resistance in pseudomonas aeruginosa clinical isolates. Heliyon. 5 (7):e02021. doi:10.1016/j.heliyon.2019.e02021.
  • Ashengroph, M., I. Nahvi, and H. Zarkesh-Esfahani. 2008. A bioconversion process using a novel isolated strain of Pseudomonas Sp. ISPC2 to produce natural vanillin from isoeugenol. Res. Pharm. Sci. 3 (2):41–47. http://rps.mui.ac.ir/index.php/jrps/article/view/49.
  • Ashengroph, M., I. Nahvi, H. Zarkesh-Esfahani, and F. Momenbeik. 2011. Pseudomonas resinovorans SPR1, a newly isolated strain with potential of transforming eugenol to vanillin and vanillic acid. New Biotechnol. 28 (6):656–664. doi:10.1016/j.nbt.2011.06.009.
  • Banerjee, G., and P. Chattopadhyay. 2019. Vanillin biotechnology: The perspectives and future. J. Sci. Food Agric. 99 (2):499–506. doi:10.1002/jsfa.9303.
  • Barghini, P., D. Di Gioia, F. Fava, and M. Ruzzi. 2007. Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb. Cell Fact. 6 (1):13. doi:10.1186/1475-2859-6-13.
  • Barthelmebs, L., C. Divies, and J. F. Cavin. 2000. Knockout of the P-coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism. Appl. Environ. Microbiol. 66 (8):3368–3375. doi:10.1128/AEM.66.8.3368-3375.2000.
  • Berger, R. G. 2009. Biotechnology of flavours—the next generation. Biotechnol. Lett.. 31 (11):1651. doi:10.1007/s10529-009-0083-5.
  • Bhalla, T. C., N. Kumari, V. Kumar, and V. Kumar. 2016. Synthesis of vanillic acid using whole cell nitrilase of wild and mutant Gordonia terrae. Bioprocess Biosyst. Eng. 39 (1):67–73. doi:10.1007/s00449-015-1490-8.
  • Braga, A., C. Guerreiro, and I. Belo. 2018. Generation of flavors and fragrances through biotransformation and De Novo synthesis. Food Bioproc. Tech. 11 (12):2217–2228. doi:10.1007/s11947-018-2180-8.
  • Carlquist, M., B. Gibson, Y. K. Yuceer, A. Paraskevopoulou, M. Sandell, A. I. Angelov, V. Gotcheva, A. D. Angelov, M. Etschmann, G. M. de Billerbeck, and G. Liden. 2015. Process engineering for bioflavour production with metabolically active yeasts - a mini-review. Yeast. 32 (1):123–143. doi:10.1002/yea.3058.
  • Chakraborty, D., G. Gupta, and B. Kaur. 2016. Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM. Protein Expres. Purif. 128:123–133. doi:10.1016/j.pep.2016.08.015.
  • Chakraborty, D., B. Kaur, K. Obulisamy, A. Selvam, and J. W. C. Wong. 2017a. Agrowaste to vanillin conversion by a natural Pediococcus acidilactici strain BD16. Environ. Technol. 38 (13–14):1823–1834. doi:10.1080/09593330.2016.1237556.
  • Chakraborty, D., A. Selvam, B. Kaur, J. W. C. Wong, and O. P. Karthikeyan. 2017b. Application of recombinant Pediococcus acidilactici BD16 (Fcs+/Ech+) for bioconversion of agrowaste to vanillin. Appl. Microbiol. Biotechnol. 101 (14):5615–5626. doi:10.1007/s00253-017-8283-8.
  • Chattopadhyay, P., G. Banerjee, and S. K. Sen. 2018. Cleaner production of vanillin through biotransformation of ferulic acid esters from agroresidue by Streptomyces sannanensis. J. Clean. Prod. 182:272–279. doi:10.1016/j.jclepro.2018.02.043.
  • Chee, M. J. Y., G. W. Lycett, T.-J. Khoo, and C. F. Chin. 2017. Bioengineering of the plant culture of capsicum frutescens with vanillin synthase gene for the production of vanillin. Mol. Biotechnol. 59 (1):1–8. doi:10.1007/s12033-016-9986-2.
  • Chen, P., L. Yan, Z. Wu, S. Li, Z. Bai, X. Yan, N. Wang, N. Liang, and H. Li. 2016. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid. Sci. Rep. 6:20400. doi:10.1038/srep20400.
  • Contreras-Jácquez, V., J. Rodríguez-González, J. C. Mateos-Díaz, E. M. Valenzuela-Soto, and A. Asaff-Torres. 2020. Differential activation of ferulic acid catabolic pathways of Amycolatopsis Sp. ATCC 39116 in submerged and surface cultures. Appl. Biochem. Biotechnol. 192:494–516. doi:10.1007/s12010-020-03336-4.
  • Converti, A., B. Aliakbarian, J. M. Domínguez, G. B. Vázquez, and P. Perego. 2010. Microbial production of biovanillin. Braz. J. Microbiol. 41 (3):519–530. doi:10.1590/S1517-83822010000300001.
  • Couto, S. R. 2008. Exploitation of biological wastes for the production of value‐added products under solid‐state fermentation conditions. Biotechnol. J. 3 (7):859–870. doi:10.1002/biot.200800031.
  • Couto, S. R., and M. Á. Sanromán. 2006. Application of solid-state fermentation to food industry-a review. J. Food Eng. 76 (3):291–302. doi:10.1016/j.jfoodeng.2005.05.022.
  • Davis, K. M., M. Rover, R. C. Brown, X. Bai, Z. Wen, and L. R. Jarboe. 2016. Recovery and utilization of lignin monomers as part of the biorefinery approach. Energies. 9 (10):808. doi:10.3390/en9100808.
  • De Jong, E. D., W. J. H. Van Berkel, R. P. Van Der Zwan, and J. A. M. De Bont. 1992. Purification and characterization of vanillyl‐alcohol oxidase from Penicillium simplicissimum: A novel aromatic alcohol oxidase containing covalently bound FAD. Eur. J. Biochem. 208 (3):651–657. doi:10.1111/j.1432-1033.1992.tb17231.x.
  • Di Gioia, D., F. Luziatelli, A. Negroni, A. G. Ficca, F. Fava, and M. Ruzzi. 2011. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. J. Biotechnol. 156 (4):309–316. doi:10.1016/j.jbiotec.2011.08.014.
  • Dörnenburg, H., and D. Knorr. 1996. Production of phenolic flavor compounds with cultured cells and tissues of vanilla species. Food Biotechnol. 10 (1):75–92. doi:10.1080/08905439609549902.
  • Dos Santos Barbosa, E., D. Perrone, A. L. Do Amaral Vendramini, and S. G. F. Leite. 2008. Vanillin production by Phanerochaete chrysosporium grown on green coconut agro-industrial husk in solid state fermentation. BioResources. 3 (4):1042–1050.
  • FAO-STAT. 2017. FAO. http://www.fao.org.
  • Fleige, C., F. Meyer, and A. Steinbüchel. 2016. Metabolic engineering of the actinomycete Amycolatopsis sp. strain ATCC 39116 towards enhanced production of natural vanillin. Appl. Environ. Microbiol. 82 (11):3410–3419. doi:10.1128/AEM.00802-16.
  • Furusawa, Y., R. Yokoyama, C. Liu, and K. Hayashi. 2013. Odor image sensing by multi probe film. IEEJ Trans. Sens. Micromachines. 133 (6). doi: 10.1541/ieejsmas.133.199.
  • Furuya, T., M. Kuroiwa, and K. Kino. 2017. Biotechnological production of vanillin using immobilized enzymes. J. Biotechnol. 243:25–28. doi:10.1016/j.jbiotec.2016.12.021.
  • Furuya, T., M. Miura, M. Kuroiwa, and K. Kino. 2015. High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two-stage process. New Biotechnol. 32 (3):335–339. doi:10.1016/j.nbt.2015.03.002.
  • Galadima, A. I., M. M. Salleh, H. Hussin, C. S. Chong, A. Yahya, S. E. Mohamad, S. Abd-Aziz, N. N. M. Yusof, M. A. Naser, and A. F. M. Al-Junid. 2020a. Biovanillin: Production concepts and prevention of side product formation. Biomass Convers. Biorefin. 10 (2):589–609. doi:10.1007/s13399-019-00418-0.
  • Galadima, A. I., M. M. Salleh, H. Hussin, N. M. Safri, R. M. Noor, C. S. Chong, A. Yahya, S. E. Mohamad, S. Abd-Aziz, and N. N. M. Yusof. 2020b. One-step conversion of lemongrass leaves hydrolysate to biovanillin by Phanerochaete chrysosporium ATCC 24725 in batch culture. Waste Biomass Valor. 11 (8):4067–4080. doi:10.1007/s12649-019-00730-w.
  • Galadima, A. I., M. M. Salleh, H. Hussin, C. C. Shiong, A. Yahaya, S. E. Mohamad, S. A. Aziz, N. N. M. Yusof, and A. F. M. Al-Junid. 2020c. Improvement of biovanillin production with two-stage PH control strategy from lemongrass leaves hydrolysates using Phanerochaete chrysosporium ATCC 24725 in batch culture. Biomass Conv. Bioref. 1–10.
  • Gallage, N. J., and B. L. Møller. 2015. Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol. Plant. 8 (1):40–57. doi:10.1016/j.molp.2014.11.008.
  • Gallage, N. J., and B. L. Møller. 2017. Vanilla: The most popular flavour. In Biotechnology of natural products., 3–24. Cham: Springer International Publishing. doi:10.1007/978-3-319-67903-7_1.
  • García-Bofill, M., P. W. Sutton, M. Guillén, and G. Álvaro. 2019. Enzymatic synthesis of vanillin catalysed by an eugenol oxidase. Applied Catal. A: Gen. 582:117117. doi:10.1016/j.apcata.2019.117117.
  • García-Hidalgo, J., D. P. Brink, K. Ravi, C. J. Paul, G. Lidénb, and M. F. Gorwa-Grauslund. 2020. Vanillin production in Pseudomonas: Whole-genome sequencing of Pseudomonas sp. Strain 9.1 and reannotation of Pseudomonas putida CalA as a vanillin reductase. Appl. Environ. Microbiol. 86 (6). doi: 10.1128/AEM.02442-19.
  • Gasson, M. J., Y. Kitamura, W. R. McLauchlan, A. Narbad, A. J. Parr, E. L. H. Parsons, J. Payne, M. J. C. Rhodes, and N. J. Walton. 1998. Metabolism of ferulic acid to vanillin A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J. Biol. Chem. 273 (7):4163–4170. doi:10.1074/jbc.273.7.4163.
  • Graf, N., and J. Altenbuchner. 2014. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Appl. Microbiol. Biotechnol.. 98 (1):137–149. doi:10.1007/s00253-013-5303-1.
  • Hansen, E. H., S. C. L. Hallwyl, and K. R. Hansen. 2018. Recombinant host cell for the biosynthesis of vanillin or vanillin beta-D-glucoside. Google Patents.
  • Hansen, E. H., B. L. Møller, G. R. Kock, C. M. Bünner, C. Kristensen, O. R. Jensen, F. T. Okkels, C. E. Olsen, M. S. Motawia, and J. Hansen. 2009. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and Baker’s yeast (Saccharomyces cerevisiae). Appl. Environ. Microbiol. 75 (9):2765–2774. doi:10.1128/AEM.02681-08.
  • Haridoss, M., C. Kamatchi, Z. Rafiq, and R. Vaidyanathan. 2015. Biotransformation of isoeugenol to vanillin by beneficial bacteria isolated from the soil of aromatic plants. J. Chem. Pharm. Res. 7 (11):274–280.
  • Havkin-Frenkel, D., and F. C. Belanger. 2008. Biotechnological production of vanillin. Biotechnol. Flavor Prod.. 3:83–98.
  • Hua, D., C. Ma, S. Lin, L. Song, Z. Deng, Z. Maomy, Z. Zhang, B. Yu, and P. Xu. 2007a. Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: Identification of major metabolites. J. Biotechnol.. 130 (4):463–470. doi:10.1016/j.jbiotec.2007.05.003.
  • Hua, D., C. Ma, L. Song, S. Lin, Z. Zhang, Z. Deng, and P. Xu. 2007b. Enhanced vanillin production from ferulic acid using adsorbent resin. Appl. Microbiol. Biotechnol.. 74 (4):783–790. doi:10.1007/s00253-006-0735-5.
  • Huang, Z., L. Dostal, and J. P. Rosazza. 1993. Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra. J. Biol. Chem. 268 (32):23954–23958.
  • Huang, Z., L. Dostal, and J. P. Rosazza. 1994. Purification and characterization of a ferulic acid decarboxylase from Pseudomonas fluorescens. J. Bacteriol. 176 (19):5912–5918. doi:10.1128/JB.176.19.5912-5918.1994.
  • Hussin, H., M. M. Salleh, C. C. Siong, M. A. Naser, S. Abd-Aziz, and A. F. M. Al-Junid. 2015. Optimization of biovanillin production of lemongrass leaves hydrolysates through Phanerochaete chrysosporium. J. Teknol. 77 (31):2180–3722.
  • Jonathan, W. C. 2017. Agrowaste to vanillin conversion by a natural Pediococcus acidilactici strain BD16. Environ. Technol. 38:1823–1834.
  • Karmakar, B., R. M. Vohra, H. Nandanwar, P. Sharma, K. G. Gupta, and R. C. Sobti. 2000. Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of Bacillus coagulans. J. Biotechnol. 80 (3):195–202. doi:10.1016/S0168-1656(00)00248-0.
  • Karode, B., U. Patil, and A. Jobanputra. 2013. Biotransformation of low cost lignocellulosic substrates into vanillin by white rot fungus, phanerochaete chrysosporium NCIM 1197.. India: NISCAIR-CSIR.
  • Kasana, R. C., U. K. Sharma, N. Sharma, and A. K. Sinha. 2007. Isolation and identification of a novel strain of Pseudomonas chlororaphis capable of transforming isoeugenol to vanillin. Curr. Microbiol. 54 (6):457–461. doi:10.1007/s00284-006-0627-z.
  • Kaur, B., and D. Chakraborty. 2013. Biotechnological and molecular approaches for vanillin production: A review. Appl. Biochem. Biotechnol. 169 (4):1353–1372. doi:10.1007/s12010-012-0066-1.
  • Kaur, B., D. Chakraborty, G. Kaur, and G. Kaur. 2013. Biotransformation of rice bran to ferulic acid by Pediococcal isolates. Appl. Biochem. Biotechnol.. 170 (4):854–867. doi:10.1007/s12010-013-0223-1.
  • Klaus, T., A. Seifert, T. Häbe, B. M. Nestl, and B. Hauer. 2019. An enzyme cascade synthesis of vanillin. Catalysts. 9 (3):252. doi:10.3390/catal9030252.
  • Knockaert, D., K. Raes, C. Wille, K. Struijs, and J. V. Camp. 2012. Metabolism of ferulic acid during growth of Lactobacillus plantarum and Lactobacillus collinoides. J. Sci. Food Agric. 92 (11):2291–2296. doi:10.1002/jsfa.5623.
  • Labuda, I., H. F. Daphna, and C. B. Faith. 2010. Biotechnology of vanillin: Vanillin from microbial sources. Handbook Vanilla Sci. Technol.. 299:311.
  • Labuda, I. M., K. A. Keon, and S. K. Goers. 1993. Microbial bioconversion process for the production of vanillin. In Progress in flavour precursor studies., 477–482. Illinois: Allured, Carol Stream.
  • Lesage-Meessen, L., A. Lomascolo, E. Bonnin, J. F. Thibault, A. Buleon, M. Roller, M. Asther, E. Record, B. C. Ceccaldi, and M. Asther. 2002. A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran. Appl. Biochem. Biotechnol. 102 (1):141–153. doi:10.1385/ABAB:102-103:1-6:141.
  • Li, T., and J. P. N. Rosazza. 2000. Biocatalytic synthesis of vanillin. Appl. Environ. Microbiol. 66 (2):684–687. doi:10.1128/AEM.66.2.684-687.2000.
  • Ma, X., and A. J. Daugulis. 2014. Transformation of ferulic acid to vanillin using a fed‐batch solid–liquid two‐phase partitioning bioreactor. Biotechnol. Prog. 30 (1):207–214. doi:10.1002/btpr.1830.
  • Martinez-Cuesta, M. C., M. J. Gasson, and A. Narbad. 2005. Heterologous expression of the plant coumarate : CoA ligase in Lactococcus lactis. Lett. Appl. Microbiol. 40 (1):44–49. doi:10.1111/j.1472-765X.2004.01621.x.
  • Masai, E., K. Harada, X. Peng, H. Kitayama, Y. Katayama, and M. Fukuda. 2002. Cloning and characterization of the ferulic acid catabolic genes of Sphingomonas paucimobilis SYK-6. Appl. Environ. Microbiol. 68 (9):4416–4424. doi:10.1128/AEM.68.9.4416-4424.2002.
  • Mathew, S., T. E. Abraham, and S. Sudheesh. 2007. Rapid conversion of ferulic acid to 4-vinyl guaiacol and vanillin metabolites by Debaryomyces hansenii. J. Mol. Catal. B: Enzym. 44 (2):48–52. doi:10.1016/j.molcatb.2006.09.001.
  • Mazhar, B., N. Jahan, N. Mazhar Ali, S. Andleeb, and S. Ali. 2017. Production of vanillin by a novel bacterium from waste residues of rice bran oil. Punjab Univ. J. Zool. 32 (1):137–142.
  • Méndez-Líter, J. A., I. Tundidor, M. Nieto-Domínguez, B. F. De Toro, A. González Santana, L. I. De Eugenio, A. Prieto, J. L. Asensio, C. Sánchez, and M. J. Martínez. 2019. Transglycosylation products generated by Talaromyces amestolkiae GH3 β-glucosidases: Effect of hydroxytyrosol, vanillin and its glucosides on breast cancer cells. Microb. Cell Fact. 18 (1):1–12. doi:10.1186/s12934-019-1147-4.
  • Minematsu, S., and X. Z. Wu. 2017. Vanillin and its detection in air. In Active ingredients from aromatic and medicinal plants., 255. BoD–Books on Demand. InTech. doi:10.5772/66737.
  • Mohan, H. K. S. V., W. K. Chee, Y. Li, S. Nayak, C. L. Poh, and A. V. Y. Thean. 2020. A highly sensitive graphene oxide based label-free capacitive aptasensor for vanillin detection. Mater. Des. 186:108208. doi:10.1016/j.matdes.2019.108208.
  • Motedayen, N., M. B. T. Ismail, and F. Nazarpour. 2013. Bioconversion of ferulic acid to vanillin by combined action of Aspergillus niger K8 and Phanerochaete crysosporium ATCC 24725. Afr. J. Biotechnol. 12 (47):6618–6624. doi:10.5897/AJB2013.12416.
  • Muheim, A., B. Müller, T. Münch, and M. Wetli. 2001. Microbiological process for producing vanillin.. U. S. Patent 6,235,507. Washington DC: U. S. Patent and Trademark Office.
  • Nadja, G., and J. Altenbuchner. 2018. Genetic engineering of pseudomonas putida KT2440 for rapid and high yield production of vanillin from ferulic acid. Google Patents.
  • Nagpure, A. A. L., and R. K. Gupta. 2011. Biotransformation of curcumin to vanillin.. India: NISCAIR-CSIR.
  • Nishimura, M., S. Kawakami, and H. Otsuka. 2018. Molecular cloning and characterization of vanillin dehydrogenase from Streptomyces Sp. NL15-2K. BMC Microbiol.. 18 (1):154. doi:10.1186/s12866-018-1309-2.
  • Paz, A., D. Outeiriño, R. P. de Souza Oliveira, and J. M. Domínguez. 2018. Fed-batch production of vanillin by Bacillus aryabhattai BA03. New Biotechnol. 40:186–191. doi:10.1016/j.nbt.2017.07.012.
  • Pérez-Rodríguez, N., R. P. de Souza Oliveira, A. M. T. Agrasar, and J. M. Domínguez. 2016. Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis Sp. ATCC 39116. Appl. Microbiol. Biotechnol. 100 (4):1677–1689. doi:10.1007/s00253-015-7005-3.
  • Pilling, D. 2018. The real price of madagascar’s vanilla boom. FInancial Times..
  • Plaggenborg, R., J. Overhage, A. Loos, J. A. C. Archer, P. Lessard, A. J. Sinskey, A. Steinbüchel, and H. Priefert. 2006. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl. Microbiol. Biotechnol. 72 (4):745–755. doi:10.1007/s00253-005-0302-5.
  • Plaggenborg, R., A. Steinbüchel, and H. Priefert. 2001. The coenzyme A-dependent, Non-Î2-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans. FEMS Microbiol. Lett.. 205 (1):9–16. doi:10.1111/j.1574-6968.2001.tb10918.x.
  • Priefert, H., J. Rabenhorst, and A. Steinbüchel. 2001. Biotechnological production of vanillin. Appl. Microbiol. Biotechnol. 56 (3–4):296–314. doi:10.1007/s002530100687.
  • Rana, R., A. Mathur, C. K. Jain, S. K. Sharma, and G. Mathur. 2013. Microbial production of vanillin. Int. J. Biotechnol. Bioeng. Res. 4 (3):227–234. http://www.ripublication.com/ijbbr.htm.
  • Rao, S. R., and G. A. Ravishankar. 2000. Vanilla flavour: Production by conventional and biotechnological routes. J. Sci. Food Agric. 80 (3):289–304. doi:10.1002/1097-0010(200002)80:3<289::aid-jsfa543>3.0.co;2-2.
  • Ravindran, R., and A. Jaiswal. 2016. Microbial enzyme production using lignocellulosic food industry wastes as feedstock: A review. Bioeng. 3 (4):30. doi:10.3390/bioengineering3040030.
  • Shimoni, E., U. Ravid, and Y. Shoham. 2000. Isolation of a Bacillus Sp. Capable of transforming isoeugenol to vanillin. J. Biotechnol. 78 (1):1–9. doi:10.1016/S0168-1656(99)00199-6.
  • Singh, A., K. Mukhopadhyay, and S. G. Sachan. 2019. Biotransformation of eugenol to vanillin by a novel strain Bacillus safensis SMS1003. Biocatal. Biotransfor. 37 (4):291–303. doi:10.1080/10242422.2018.1544245.
  • Sinha, A. K., U. K. Sharma, and N. Sharma. 2008. A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents. Int. J. Food Sci. Nutr. 59 (4):299–326. doi:10.1080/09687630701539350.
  • Tan, M. C., S. L. Liew, M. Y. Maskat, W. Aida, and W. M. Osman. 2015. Optimization of vanillin production using isoeugenol as substrate by Aspergillus niger I-1472. Int. Food Res. J. 22 (4):1651–1656.
  • Tang, P. L., and O. Hassan. 2020. Bioconversion of ferulic acid attained from pineapple peels and pineapple crown leaves into vanillic acid and vanillin by Aspergillus Niger I-1472. BMC Chem. 14 (1):1–11. doi:10.1186/s13065-020-0663-y.
  • Tilay, A., M. Bule, and U. Annapure. 2010. Production of biovanillin by one-step biotransformation using fungus Pycnoporous cinnabarinus. J. Agric. Food Chem. 58 (7):4401–4405. doi:10.1021/jf904141u.
  • Van den Heuvel, R. H. H., M. W. Fraaije, C. Laane, and W. J. H. Van Berkel. 2001. Enzymatic synthesis of vanillin. J. Agric. Food Chem. 49 (6):2954–2958. doi:10.1021/jf010093j.
  • Venturi, V., F. Zennaro, G. Degrassi, B. C. Okeke, and C. V. Bruschi. 1998. Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358. Microbiol.. 144 (4):965–973. doi:10.1099/00221287-144-4-965.
  • Vibert, M., and A. Etchebarne. 2019. Method for the purification of natural vanillin. Google Patents.
  • Wangrangsimagul, N., K. Klinsakul, A. S. Vangnai, J. Wongkongkatep, P. Inprakhon, K. Honda, H. Ohtake, J. Kato, and T. Pongtharangkul. 2012. Bioproduction of vanillin using an organic solvent-tolerant Brevibacillus agri 13. Appl. Microbiol. Biotechnol.. 93 (2):555–563. doi:10.1007/s00253-011-3510-1.
  • Willaert, R., H. Verachtert, K. van den Bremt, F. Delvaux, and G. Derdelinckx. 2005. Bioflavouring of foods and beverages. In Applications of cell immobilisation biotechnology., 355–372. Dordrecht: Springer.
  • Yamada, M., Y. Okada, T. Yoshida, and T. Nagasawa. 2007. Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Appl. Microbiol. Biotechnol. 73:1025–1030. doi:10.1007/s00253-006-0569-1.
  • Yan, L., P. Chen, S. Zhang, S. Li, X. Yan, N. Wang, N. Liang, and H. Li. 2016. Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors. Sci. Rep.. 6 (1):1–12. doi:10.1038/srep34644.
  • Yang, W., H. Tang, J. Ni, Q. Wu, D. Hua, F. Tao, and P. Xu. 2013. Characterization of two streptomyces enzymes that convert ferulic acid to vanillin. Edited by Paul Jaak Janssen. PLoS ONE. 8 (6):e67339. doi:10.1371/journal.pone.0067339.
  • Yoon, S. H., C. Li, J. E. Kim, S. H. Lee, J. Y. Yoon, M. S. Choi, W. T. Seo, J. K. Yang, J. Y. Kim, and S. W. Kim. 2005. Production of vanillin by metabolically engineered Escherichia coli. Biotechnol. Lett. 27 (22):1829–1832. doi:10.1007/s10529-005-3561-4.
  • Zamzuri, N. A., and S. Abd-Aziz. 2013. Biovanillin from agro wastes as an alternative food flavour. J. Sci. Food Agric. 93 (3):429–438. doi:10.1002/jsfa.5962.
  • Zamzuri, N. A., S. Abd-Aziz, R. A. Rahim, L. Y. Phang, N. B. Alitheen, and T. Maeda. 2014. A rapid colorimetric screening method for vanillic acid and vanillin-producing bacterial strains. J. Appl. Microbiol. 116 (4):903–910. doi:10.1111/jam.12410.
  • Zhao, J., H. Xia, T. Yu, L. Jin, X. Li, Y. Zhang, L. Shu, L. Zeng, and Z. He. 2018. A colorimetric assay for vanillin detection by determination of the luminescence of O-toluidine condensates. Edited by Etsuro Ito. PLoS One. 13 (4):e0194010. doi:10.1371/journal.pone.0194010.
  • Zhao, L. Q., Z. H. Sun, P. Zheng, and J. Y. He. 2006. Biotransformation of isoeugenol to vanillin by Bacillus fusiformis CGMCC1347 with the addition of resin HD-8. Process Biochem. 41 (7):1673–1676. doi:10.1016/j.procbio.2006.02.007.
  • Zhao, L. Q., Z. H. Sun, P. Zheng, and L. L. Zhu. 2005. Biotransformation of isoeugenol to vanillin by a novel strain of Bacillus fusiformis. Biotechnol. Lett. 27 (19):1505–1509. doi:10.1007/s10529-005-1466-x.
  • Zheng, L., P. Zheng, Z. Sun, Y. Bai, J. Wang, and X. Guo. 2007. Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresour. Technol. 98 (5):1115–1119. doi:10.1016/j.biortech.2006.03.028.
  • Zhou, R., and X. Yu. 2018. Methods of making vanillin via the microbial fermentation of ferulic acid from eugenol using a plant dehydrogenase. Google Patents.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.