3,511
Views
5
CrossRef citations to date
0
Altmetric
Articles

Breeding for silicon-use efficiency, protein content and drought tolerance in bread wheat (Triticum aestivum L.): a review

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 17-29 | Received 11 May 2021, Accepted 20 Sep 2021, Published online: 04 Oct 2021

References

  • Abbas T, Sattar A, Ijaz M, Aatif M, Khalid S, Sher A. 2017. Exogenous silicon application alleviates salt stress in Okra. Hort Environ Biotechnol. 58:342–349. doi:10.1007/s13580-017-0247-5.
  • Ahmad F, Rahmatullah TA, Maqsood MA, Mukkram TA, Kanwal S. 2007. Effect of silicon application on wheat (Triticum aestivum L.) growth under water deficiency stress. Emir J Food Agric. 19:1–7. doi:10.9755/ejfa.v12i1.5170.
  • Ahmed M, Qadeer U, Ahmed ZI, Hassan F. 2016. Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. Arch Agron Soil Sci. 62:299–315. doi:10.1080/03650340.2015.1048235.
  • Ahmed N, Chowdhry MA, Khaliq I, Maekawa M. 2007. The inheritance of yield and yield components of five wheat hybrid populations under drought conditions. Ind J Agric Sci. 8:53–59. doi:10.21082/ijas.v8n2.2007.
  • Ahn S, Anderson JA, Sorrels ME, Tanksley SD. 1993. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet. 241:483–490.
  • Alvarez R, Sparks DL. 1985. Polymerization of silicate anions in solutions at low concentrations. Nature. 318(6047):649–651.
  • Aquino D, Del Barrio A, Trach NG, Hai NT, Khang DN, Toan NT, Van Hung N. 2020. Rice straw-based fodder for ruminants. In: M. Gummert, N. Van Hung, P. Chivenge, B. Douthwaite, editor. Sustainable rice straw management. Cham: Springer; p. 111–130.
  • Assefa T, Jha M, Reyes M, Worqlul AW. 2018. Modeling the impacts of conservation agriculture with a drip irrigation system on the hydrology and water management in Sub-Saharan Africa. Sustainability. 10:4763. doi:10.3390/su10124763.
  • Ayed S, Othmani A, Bouhaouel I, Rasâa N, Othmani S, Amara HS. 2021. Effect of silicon (Si) seed priming on germination and effectiveness of its foliar supplies on durum wheat (Triticum turgidum L. ssp. durum) genotypes under semi-arid environment. Silicon. doi:10.1007/s12633-021-00963-2.
  • Bokor B, Ondoš S, Vaculik M, Bokorová S, Weidinger M, Lichtscheidl I, Turňa J, Lux A. 2017. Expression of genes for Si uptake, accumulation, and correlation of Si with other elements in Ionome of maize kernel. Front Plant Sci. 8:1063. doi:10.3389/fpls.2017.01063.
  • Brugiére T, Exley C. 2017. Callose-associated silica deposition in Arabidopsis. J Trace Elem Med Biol. 39:86–90.
  • Cacique IS, Domiciano GP, Moreira WR, Rodrigues FA, Cruz MFA, Serra NS, Català AB. 2013. Effect of root and leaf applications of soluble silicon on blast development in rice. Bragantia. 72:304–309. doi:10.1590/brag.2013.032.
  • CGIAR. 2017. Wheat in the world. 28 April 2020. https://wheat.org/wheat-in-the-world/.
  • Chaudhari PR, Tamrakar N, Singh L, Tandon A, Sharma D. 2018. Rice nutritional and medicinal properties: a review article. J Pharmacogn Phytochem. 7:150–156.
  • Chiba Y, Mitani N, Yamaji N, Ma JF. 2009. Hvlsi1 is a silicon influx transporter in barley. Plant J. 57:810–818. doi:10.1111/j.1365-313X.2008.03728.x.
  • Cornelius JT, Delvaux B. 2016. Soil processes drive the biological silicon feedback loop. Funct Ecol. 30:1298–1310. doi:10.1111/1365-2435.12704.
  • Crespo-Herrera LA, Crossa J, Huerta-Espino J, Vargas M, Mondal S, Velu G, Payne TS, Braun H, Singh RP. 2018. Genetic gains for grain yield in CIMMYT's semi-arid wheat yield trials grown in suboptimal environments. Crop Sci. 58:1890–1898. doi:10.2135/cropsci2018.01.0017.
  • Currie HA, Perry CC. 2007. Silica in plants: biological, biochemical and chemical studies. Ann Bot. 100(7):1383–1389.
  • Deshmukh R, Bélanger RR. 2016. Molecular evolution of aquaporins and silicon influx in plants. Funct Ecol. 30:1277–1285. doi:10.1111/1365-2435.12570.
  • Dong Z, Li Y, Xiao X, Chen Y, Shen X. 2018. Silicon effect on growth, nutrient uptake, and yield of peanut (Arachis hypogaea L.) under aluminium stress. J Plant Nutr. 41:2001–2008. doi:10.1080/01904167.2018.1485163.
  • Dorairaj D, Ismail MR, Sinniah UM, Tan KB. 2020. Silicon mediated improvement in agronomic traits, physiological parameters and fiber content in Oryza sativa. Acta Physiol Plant. 42. doi:10.1007/s11738-020-3024-5
  • Epstein E. 1999. Silicon. Annu Rev Plant Physiol Plant Mol Biol. 50:641–664. doi:10.1146/annurev.arplant.50.1.641.
  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Nasim W, Adkins S, Saud S, Ihsan MZ, et al. 2017. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci. 8:1–16. doi:doi:10.3389/fpls.2017.01147.
  • Farooq MA, Dietz KJ. 2015. Silicon as versatile player in plant and human biology: overlooked and poorly understood. Front. Plant Sci. 6:994–1008. doi:10.3389/fpls.2015.00994.
  • Fradgley N, Evans G, Biernaskie JM, Cockram J, Marr EC, Oliver AG, Ober E, Jones H. 2020. Effects of breeding history and crop management on the roots architecture of wheat. Plant Soil. 452:587–600. doi:10.1007/s11104-020-04585-2.
  • Gambeta GA, Knipfer T, Fricke W, McElorne AJ. 2017. Root aquaporins and stress. In: F. Chaumont, S.D. Tyerman, editor. Plant aquaporins: from transport to signalling. Cham: Springer International Publishing. p. 133–153.
  • Gaur S, Kumar J, Kumar D, Chauhan DK, Prasad SM, Srivastava PK. 2020. Fascinating impact of silicon and silicon transporters in plants: a review. Ecotoxicol Environ Saf. 202. doi:10.1016/j.ecoenv.2020.110885
  • Gerami M, Rameeh V. 2012. Study of silicon and nitrogen effects on yield components and shoot ions nutrient composition in rice. Agriculture. 58:93–98. doi:10.2478/v10207-012-0011-x.
  • Ghaed-Rahimi L, Heidari B, Dadkhodaie A. 2017. Construction and efficiency of selection indices in wheat (Triticum aestivum L.) under drought stress and well-irrigated conditions. Plant Breed Biotechnol. 5:78–87. doi:10.9787/PBB.2017.5.2.078.
  • Gokulraj N, Ravichandran V, Boominathan P, Soundararajan R. 2018. Response of silicon on membrane stability, plant water status and yield of rice genotypes under drought. Int J Agric Sci. 10:6615–6618. https://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000217.
  • Gómez-Merino FC, Trejo-Téllez LI, García-Jiménez A, Escobar-Sepúlveda HF, Ramírez-Olvera SM. 2020. Silicon flow from root to shoot in pepper: a comprehensive in silico analysis reveals a potential linkage between gene expression and hormone signaling that stimulates plant growth and metabolism. Peer J. 8. doi:10.7717/peerj.10053
  • Gong HJ, Chen KM, Chen GC, Wang SM, Zhang CL. 2003. Effect of silicon on growth of wheat under drought. J Plant Nutr. 26:1055–1063. doi:10.1081/PLN-120020075.
  • Gou T, Yang L, Hu W, Chen X, Zhu Y, Guo J, Gong H. 2020. Silicon improves the growth of cucumber under excess nitrate stress by enhancing nitrogen assimilation and chlorophyll synthesis. Plant Physiol Biochem. 152:53–61. doi:10.1016/j.plaphy.2020.04.031.
  • Greger M, Landberg T. 2018. Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants. 7:1–16.
  • Grzesiak S, Hordyńska N, Szcyrek P, Grzesiak MT, Noga A, Szechyńska-Hebda M. 2019. Variation among wheat (Triticum aestivum L.) genotypes in response to the drought stress: I – selection approaches. J Plant Inter. 14:30–44. doi:10.1080/17429145.2018.1550817.
  • Guerriero G, Hausman J-F, Legay S. 2016. Silicon and the plant extracellular matrix. Front Plant Sci. 7. doi:10.3389/fpls.2016.00463
  • Hattori T, Inanaga S, Araki H, An P, Mortia S, Luxova M, Lux A. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Acta Physiol Plant. 123:459–466. doi:10.1111/j.1399-3054.2005.00481-x.
  • Hemmati S. 2017. Physiological roles of aquaporins in the improvement of plant water and nutrient usage. Res Rev Biosci. 12:133–142.
  • Hernandez-Apaolaza L. 2014. Can silicon partially alleviate micronutrient deficiency in plants? A review. Planta. 240:447–458. doi:10.1007/s00425-014-2119-x.
  • Hu J, Li Y, Jeong BR. 2020. Putative silicon transporters and effect of temperature stresses and silicon supplementation on their expression and tissue silicon content in Poinsettia. Plants. 9:596. doi:10.3390/plants9050569.
  • Huang C, Zhou S, Hu W, Deng X, Wei S, Yeng G, He G. 2014. The wheat aquaporin gene TaAQP7 confers cold tolerance in transgenic tobacco. Zeitschr Naturf C J Biosci. 69:142–148. doi:10.5560/znc.2013-0079.
  • Igrejas G, Branlard G. 2020. The importance of wheat. In: G. Igrejas, T. M. Ikeda, C. Guzmán, editor. Wheat quality for improving processing and human health. Cham: Springer Nature; p. 1–8.
  • Jackson VML, Rubaihayo P, Wasswa P, Hashim AT. 2019. Inheritance of silicon uptake ability in rice blast resistant varieties. Asian J Res Crop Sci. 4:1–6. doi:10.9734/ajrcs/2019/v4i230066.
  • Jain S, Rai P, Singh J, Singh VP, Prasad R, Rana S, Deshmukh R, Tripathi DK, Sharma S. 2021. Exogenous application of silicon alleviates metsulfuron methyl induced stress in wheat seedlings. Plant Physiol Biochem. In press. doi:10.1016/j.plaphy.2021.07.031
  • Kamenidou S, Cavins TJ, Marek S. 2008. Silicon supplements affect horticultural traits of greenhouse-produced ornamental sunflowers. HortScience. 43(1):236–239.
  • Kamenidou S, Cavins TJ, Marek S. 2010. Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Sci Hortic. 123:390–394. doi:10.1016/j.scienta.2009.09.008.
  • Khaliq A, Ali S, Hameed A, Farooq MA, Farid M, Shakoor MB, Mahmood K, Ishaque W, Rizwan M. 2016. Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth, photosynthesis, and suppressing Ni uptake and oxidative stress. Arch Agron Soil Sci. 62:633–647.
  • Kumar R, Kumar A, Sharma NK, Kaur N, Chundur V, Chawla M, Sharma S, Singh K, Garg M. 2016. Soft and hard textured wheat differ in starch properties as indicated by trimodal distribution, morphology, thermal and crystalline properties. PLoS One. 11:1–14. doi:10.1371/journal.pone.0147622.
  • Laane H-M. 2018. The effects of foliar sprays with different silicon compounds. Plants. 7:1–22. doi:10.3390/plants7020045.
  • Liang SJ, Li ZQ, Li XJ, Xie HG, Zhu RS, Lin JX, Xie HA, Wu H. 2013. Effects of stem structural characters and silicon content on lodging resistance in rice (Oryza sativa L.). Res. Crops 14:621–636
  • Liang Y, Sun W, Zhu Y, Christie P. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut. 147. doi:10.1016/j.envpol.2006.06.008
  • Ligaba-Osena A, Guo W, Choi SC, Limmer MA, Seyfferth AL, Hankoua BB. 2020. Silicon enhances biomass and grain yield in an ancient crop tef [Eragrostis tef (Zucc.) Trotter]. Front Plant Sci. 11. doi:10.3389/fpls.2020.608503
  • Lin Y, Sun Z, Li Z, Xue R, Cui W, Sun S, Liu T, Zeng R, Song Y. 2019. Deficiency in silicon transporter Lsi1 compromises inducibility of anti-herbivore defense in rice plants. Front Plant Sci. 10. doi:10.3389/fpls.2019.00652
  • Luu DT, Maurel C. 2005. Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ. 28:85–96. doi:10.1111/j.1365-3040.2004.01295.x.
  • Lux A, Lukačová Z, Vaculik M, Švubová R, Kohanová J, Soukup M, Martinka M, Bokor B. 2020. Silicification of root tissues. Plants. 9. doi:10.3390/plants9010111
  • Ma JF, Miyake Y, Takahashi E. 2001. Silicon as a beneficial element for crop plants. In: L. E. Datnoff, G. H. Snyder, G. H. Korndörfer, editor. Silicon in agriculture. Amsterdam: Elsevier Science B.V; p. 17–39.
  • Ma, JF. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 50:11--18.
  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. 2006. A silicon transporter in rice. Nature. 440:688–691. doi:10.1038/nature04590.
  • Ma JF, Yamaji N. 2008. Functions and transport of silicon in plants. Cell Mol Life Sci. 65:6049–3057. doi:10.1007/s00018-008-7580-x.
  • Ma JF, Yamaji N. 2015. A cooperative system of silicon transport in plants. Trends Plant Sci. 20:435–442. doi:10.1016/j.tplants.2015.04.007.
  • Ma JF, Yamaji N, Mitani-Ueno N. 2011. Transport of silicon from roots to panicles in plants. Proc Japan Acad Series B Physiol Biol Sci. 87:377–385. doi:10.2183/pjab.87.377.
  • Ma JF, Yamaji N, Tamai K, Mitani N. 2007. Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol. 145:919–924. doi:10.1104/pp.107.107599.
  • Madrid-Espinoza J, Brunel-Salidias N, Guerra FP, Guttiérrez A, del Pozo A. 2018. Genome-wide identification and transcriptional regulation of aquaporin genes in bread wheat (Triticum aestivum L.) under water stress. Genes. 9. doi:10.3390/genes9100497
  • Maghsoudi K, Emam Y, Ashraf M. 2016. Foliar application of silicon at different growth stages alters growth and yield of selected wheat cultivars. J Plant Nutr. 39:1194–1203. doi:10.1080/01904167.2015.1115876.
  • Maghsoudi K, Emam Y, Niazi A, Pessarakli M, Arvin MJ. 2018. P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. J Plant Inter. 13:461–471. doi:10.1080/17429145.2018.1506516.
  • Malav JK, Patel KC, Sajid M. 2015. Influence of silicon fertilization on yield and nutrients uptake (Si, P, K, S and Na) of rice (Oryza sativa L.). Ecoscan. 9:629–634.
  • Mandlik R, Thakral V, Raturi G, Shinde S, Nikolic M, Tripathi DK, Sonah H, Deshmukh R. 2020. Significance of silicon uptake, transport and deposition in plants. J Exp Bot. 71:6703–6718. doi:10.1093/jxb/eraa301.
  • Mburu K, Oduor R, Mgutu A, Tripathi L. 2016. Silicon application enhances resistance to Xanthomonas wilt disease in banana. Plant Pathol. 65(5):807–818.
  • McLarnon E, McQueen-Mason S, Lenk I, Hartley SE. 2017. Evidence for active uptake and deposition of Si-based defenses in tall fescue. Front Plant Sci. 8:1–11. doi:10.3389/fpls.2017.01199.
  • Meena VD, Dotaniya ML, Saha JK, Patra AS. 2021. Silicon potential to mitigate plant heavy metals stress for sustainable agriculture: a review. Silicon. doi:10.1007/s12633-021-01170-9.
  • Melo SP, Korndorfer GH, Korndorfer CM, Lana RMQ, Santan DG. 2003. Silicon accumulation and water deficient tolerance in grasses. Sci Agric. 60:755–759. doi:10.1590/S0103-90162003000400022.
  • Mohamed NEM. 2013. Genotype by environment interactions for grain yield in bread wheat (Triticum aestivum L.). J Plant Breed Crop Sci. 5:150–157. doi:10.5897/JPBCS2013.0390.
  • Monneveux P, Jing R, Misra S. 2012. II. 1.2 Phenotyping wheat for adaptation to drought using physiological traits. Front Physiol. 3. doi:10.3389/fphys.2012.00429
  • Monpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Belzile F, Ma JF, Bélanger RR. 2012. Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol. 79:35–46.
  • Motawea MH, Said AA, Khaled AGA. 2015. ISSR marker-trait associations and stability analysis in bread wheat varieties. Plant Breed Biotechnol. 3:167–177. doi:10.9787/PBB.2015.3.2.167.
  • Mwadzingeni L, Shimelis H, Dube E, Laing MD, Tsilo TJ. 2016a. Breeding wheat for drought tolerance: progress and technologies. J Integr Agric. 15:935–943. doi:10.1016/S2095-3119(15)61102-9.
  • Mwadzingeni L, Shimelis H, Tesfay S, Tsilo TJ. 2016b. Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analysis. Front Plant Sci. 7:1276. doi:10.3389/fpls.2016.01276.
  • Mwadzingeni L, Shimelis H, Rees DJG, Tsilo TJ. 2017. Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PloS one 12:e0171692.
  • Nada RM, Abogadallah GM. 2014. Aquaporins are major determinants of water use efficiency of rice plants in the field. Plant Sci. 227:165–180. doi:10.1016/j.plantsci.2014.08.006.
  • Neu S, Schaller J, Dudel EG. 2017. Silicon availability modifies nutrient use efficiency and content, C: N: P stoichiometry and productivity of winter wheat (Triticum aestivum L.). Sci Rep. 7. doi:10.1038/srep40829
  • Nevo, E, Korol AB, Beiles A, Fahima T. 2002. Evolution of Wild Emmer and Wheat Improvement: Population genetics, genetic resources and genome organization of wheat's progenitor, Triticum dicoccoides. Springer-Verlag Inc., Germany: Berlin. p. 1–232.
  • Nhemachena CR, Kirsten J. 2017. A historical assessments of sources and uses of wheat varietal innovations in South Africa. South Afr J Sci. 113:1–8. doi:10.17159/sajs.2017/20160008.
  • Othmani A, Ayed S, Bezzin O, Farooq M, Ayed-Slama O, Slim-Amara H, Younes MB. 2020. Effect of silicon supply methods on durum wheat (Triticum durum Desf.) response to drought stress. Silicon. doi:10.1007/s12633-020-00639-3.
  • Ouellette S, Goyette M-H, Labbé C, Laur J, Gaudreau L, Gosselin A, Dorais M, Deshmukh RK, Bélanger RR. 2017. Silicon transporters and effects of silicon amendments in strawberry under high tunnel and field conditions. Front Plant Sci. 8:949.
  • Pandey B, Sharma P, Pandey DM, Sharma I, Chatrath R. 2013. Identification of new aquaporin genes and single nucleotide polymorphism in bread wheat. Evolut Bioinform. 9:437–452. doi:10.4137/EBO.S12568.
  • Pascual MB, Gonzalo MJ, Hernandez-Apaolaza L. 2016. Silicon addition to soybean (Glycine max L.) plants alleviates zinc deficiency. Plant Physiol Biochem. 108:132–138.
  • Passioura J. 2012. Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol. 39:851–859. doi:10.1071/FP12079.
  • Pilon C, Sorrato RP, Moreno LA. 2013. Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop Sci. 53:1605–1614. doi:10.2135/cropsci2012.10.0580.
  • Prasanna YL, Rajeswari VR, Rao PR, Umamahesh V, Prasad MS. 2018. Influence of silicon solubilizers on growth and yield of rice genotypes. J Chem Stud. 6:1090–1095. https://sasapjas.org/wp-content/uploads/2019/08/234.pdf.
  • Putpeerawit P, Sojikul P, Thitamadee S, Narangajavana J. 2017. Genome-wide analysis of aquaporin gene family and their responses to water-deficit stress conditions in cassava. Plant Physiol Biochem. 121:118–127. doi:10.1016/j.plaphy.2017.10.025.
  • Putra R, Powell JR, Hartley SE, Johnson SN. 2020. Is it time to include legumes in plant silicon research? Funct Ecol. 34(6):1142–1157.
  • Rao GB, Sushmitha P. 2017. Silicon uptake, transportation and accumulation in rice. J Pharmacogn Phytochem. 6:290–293. http://biovedjournal.org/bv29(1)/37.pdf.
  • Rashad RT, Hussien RA. 2018. Studying the solubility, availability, and uptake of silicon (Si) from some ore minerals in sandy soil. SAINS TANAH J Soil Sci Agroclimatol. 15(2):69–82.
  • Réthoré E, Ali N, Yvin J-C, Hosseini SA. 2020. Silicon regulates source to sink metabolic homeostasis and promotes growth of rice plants under sulfur deficiency. Int J Mol Sci. 21. doi:10.3390/ijms21103677
  • Sapre S, Vakharia DN. 2016. Role of silicon under water deficit stress in wheat: (biochemical perspective): a review. Agric Rev. 37:109–116. doi:10.18805/ar.v37i2.10736.
  • Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M. 2006. Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry. 80(1):89–108.
  • Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E. 2010. Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytol. 186:385–391. doi:10.1111/j.1469-8137.2009.03176.x.
  • Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, de Groot S, Soole K, Langridge P. 2017. Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Front Plant Sci. 8:1–8. doi:10.3389/fpls.2017.01950.
  • Shi Y, Zhang Y, Han W, Feng R, Hu Y, Guo J, Gong H. 2016. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Front Plant Sci. 7. doi:10.3389/fpls.2016.00196
  • Siddiqui MH, Al-Whaibi MH. 2014. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum Mill.) seeds. Saudi J Biol Sci. 21:13–17. doi:10.1016/j.sjbs.2013.04.005.
  • Soltani M, Kafi M, Nezami A, Taghiyari HR. 2018. Effects of silicon at nano and micro scales on the growth and nutrient uptake of potato minitubers (Solanum tuberosum var. Agria) in greenhouse conditions. BioNanoSci. 8:218–228. doi:10.1007/s12668-017-0467-2.
  • Souri Z, Khanna K, Karimi N, Ahmad P. 2020. Silicon and plants: current knowledge and future prospects. J Plant Growth Regul. 40:906–925. doi:10.1007/s00344-020-10172-7.
  • Souza EJ, Martin JM, Guttieri MJ, O'Brien KM, Habernicht DK, Lanning SP, McLean R, Carlson GR, Talbert LE. 2004. Influence of genotype, environment, and nitrogen management on spring wheat quality. Crop Sci. 44:425–432. doi:10.2135/cropsci2004.4250.
  • Stewart ZP, Pierzynski GM, Middendorf BJ, Prasad PVV. 2020. Approaches to improve soil fertility in sub-Saharan Africa. J Exp Bot. 71:632–641. doi:10.1093/jxb/erz446.
  • Svoboda P, Kurešova G, Raimanová I, Kunzová E, Haberle J. 2020. The effect of different fertilization treatments on wheat root depth and length density distribution in a long-term experiment. Agronomy. 10:1355. doi:10.3390/agronomy10091355.
  • Swain R, Rout GR. 2020. Silicon mediated alleviation of salinity stress regulated by silicon transporter genes (Lsi1 and Lsi2) in Indica rice. Braz Arch Biol Technol. 63. doi:10.1590/1678-4324-2020180513
  • Takahashi E, Ma JF, Miyake Y. 1990. The possibility of silicon as an essential element for higher plants. Comm Agric Food Chem. 2(2):99–102.
  • Tian J, Deng Z, Zhang K, Yu H, Jiang X, Li C. 2015. Genetic analyses of wheat and molecular marker-assisted breeding: genetic map and QTL mapping. Beijing: Springer. doi:10.1007/978-94-017-7390-4
  • Toledo MZ, Castro GSA, Crusciol CAC, Soratto RP, Cavariani C, Ishizuka MS, Picoli LB. 2012. Silicon leaf application and physiological quality of white oat and wheat seeds. Ciênc Agrár Lond. 33:1693–1702.
  • Trethowan RM, van Ginkel M, Rajaram S. 2002. Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Sci. 42:1441–1446.
  • Rehman MZU, Rizwan M, Rauf A, Ayub MA, Ali S, Qayyum MF, Waris AA, Naeem A, Sanaullah M. 2019. Split application of silicon in cadmium (Cd) spiked alkaline soil plays a vital role in decreasing Cd accumulation in rice (Oryza sativa L.) grains. Chemosphere. 226:454–462.
  • Vandeleur R, Niemietz C, Tillbrook J, Tyerman SD. 2005. Role of aquaporins in root responses to irrigation: root physiology – from gene to function. Plant Soil. 274:141–161. doi:10.007/s11104-004-8070-z.
  • Vatanserver R, Ozyigit II, Filiz E, Gozukara N. 2017. Genome-wide exploration of silicon (Si) transporter genes, Lsi1 and Lsi2 in plants; insights into Si-accumulation status/capacity of plants. Biometals. 30:185–200. doi:10.1007/s10534-017-9992-2.
  • White CA, Sylvester-Bradley R, Berry PM. 2015. Root length densities of UK wheat and oilseed rape crops with implications for water capture and yield. J Exp Bot. 66:2293–2303. doi:10.1093/jxb/erv077.
  • Worku T, Khare D, Tripathi SK. 2018. Spatiotemporal trend analysis of rainfall and temperature and its implication on crop production. J Water Clim Change. 10:799–817. doi:10.2166/wcc.2018.064.
  • Xu C, Wang M, Zhou L, Quan T, Xia G. 2013. Heterologous expression of the wheat aquaporin gene TaTIP2;2. Compromises the abiotic stress tolerance of Arabidopsis thaliana. PLoS One. 8:e79618. doi:10.1371/journal.pone.0079618.
  • Yamaji N, Chiba Y, Mitani-Ueno N, Ma JF. 2012. Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol. 160:1491–1497.
  • Yan G-C, Miroslav N, Ye M-J, Xiao Z-X, Liang Y-C. 2018. Silicon acquisition and accumulation in plant and its significance for agriculture. J Integr Agric. 17:2138–2150. doi:10.1016/S2095-3119(18)62037-4.
  • Younis AA, Khattab H, Emam MM. 2020. Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings. Biol Plant. 64:343–352. doi:10.32615/bp.2020.030.
  • Zargar SM, Mahajan R, Bhat JA, Nazir M, Deshmukh R. 2019. Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech. 9:73. doi:10.1007/s13205-019-1613-z.