1,171
Views
15
CrossRef citations to date
0
Altmetric
Special Issue: Functional Food Science

Functional properties of anti-inflammatory substances from quercetin-treated Bifidobacterium adolescentis

ORCID Icon, , , , , , , , , & show all
Pages 689-697 | Received 02 Oct 2017, Accepted 31 Oct 2017, Published online: 22 Nov 2017

References

  • Rastall RA, Gibson GR, Gill HS, et al. Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: An overview of enabling science and potential applications. FEMS Microbiol Ecol. 2005;52(2):145–152.10.1016/j.femsec.2005.01.003
  • Reichardt N, Duncan SH, Young P, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014;8(6):1323–1335.10.1038/ismej.2014.14
  • Belenguer A, Duncan SH, Calder AG, et al. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol. 2006;72(5):3593–3599.10.1128/AEM.72.5.3593-3599.2006
  • Nishijima S, Suda W, Oshima K, et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 2016;23(2):125–133.10.1093/dnares/dsw002
  • Schnorr SL, Candela M, Rampelli S, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014;5:3654.
  • LeBlanc JG, Milani C, de Giori GS, et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24(2):160–168.10.1016/j.copbio.2012.08.005
  • Coakley M, Ross RP, Nordgren M, et al. Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol. 2003;94(1):138–145.10.1046/j.1365-2672.2003.01814.x
  • Martinez FAC, Balciunas EM, Converti A, et al. Bacteriocin production by Bifidobacterium spp. A review. Biotechnol Adv. 2013;31(4):482–488.10.1016/j.biotechadv.2013.01.010
  • van Geel-Schutten GH, Flesch F, ten Brink B, et al. Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides. Appl Microbiol Biotechnol. 1998;50(6):697–703.10.1007/s002530051353
  • Imaoka A, Shima T, Kato K, et al. Anti-inflammatory activity of probiotic Bifidobacterium: Enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells. World J Gastroenterol. 2008;14(16):2511–2516.10.3748/wjg.14.2511
  • Okada Y, Tsuzuki Y, Hokari R, et al. Anti-inflammatory effects of the genus Bifidobacterium on macrophages by modification of phospho-IκB and SOCS gene expression. Int J Exp Pathol. 2009;90(2):131–140.10.1111/iep.2009.90.issue-2
  • Wang Z, Wang J, Cheng Y, et al. Secreted factors from Bifidobacterium animalis subsp. lactis inhibit NF-κB-mediated interleukin-8 gene expression in Caco-2 cells. Appl Environ Microbiol. 2011;77(22):8171–8174.10.1128/AEM.06145-11
  • Khokhlova E V, Smeianov V V, Efimov B a, et al., Anti-inflammatory properties of intestinal Bifidobacterium strains isolated from healthy infants. Microbiol Immunol. 2012;56(1): 27–39.10.1111/mim.2012.56.issue-1
  • Clifford MN. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med. 2004;70(12):1103–1114.10.1055/s-2004-835835
  • Selma MV, Espín JC, Tomás-Barberán Fa. Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem. 2009;57(15):6485–6501.10.1021/jf902107d
  • Monagas M, Urpi-Sarda M, Sánchez-Patán F, et al. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct. 2010;1(3):233–253.10.1039/c0fo00132e
  • Williamson G, Clifford MN. Colonic metabolites of berry polyphenols: the missing link to biological activity? Br J Nutr. 2010;104(S3):S48–S66.10.1017/S0007114510003946
  • Tuohy KM, Conterno L, Gasperotti M, et al. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J Agric Food Chem. 2012;60(36):8776–8782.10.1021/jf2053959
  • Gasperotti M, Passamonti S, Tramer F, et al. Fate of microbial metabolites of dietary polyphenols in rats: is the brain their target destination? ACS Chem Neurosci. 2015;6(8):1341–1352.10.1021/acschemneuro.5b00051
  • Etxeberria U, Fernández-Quintela A, Milagro FI, et al. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem. 2013;61(40):9517–9533.10.1021/jf402506c
  • Kawabata K, Sugiyama Y, Sakano T, et al. Flavonols enhanced production of anti-inflammatory substance(s) by Bifidobacterium adolescentis : Prebiotic actions of galangin, quercetin, and fisetin. BioFactors. 2013;39(4):422–429.10.1002/biof.1081
  • Kawabata K, Kato Y, Sakano T, et al. Effects of phytochemicals on in vitro anti-inflammatory activity of Bifidobacterium adolescentis. Biosci Biotechnol Biochem. 2015;79(5):799–807.10.1080/09168451.2015.1006566
  • McMurrough I, Madigan D, Smyth MR. Adsorption by polyvinylpolypyrrolidone of catechins and proanthocyanidins from beer. J Agric Food Chem. 1995;43(10):2687–2691.10.1021/jf00058a025
  • Green LC, Wagner DA, Glogowski J, et al. Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Anal Biochem. 1982;126(1):131–138.10.1016/0003-2697(82)90118-X
  • Liu T, Li J, Liu Y, et al. Short-Chain fatty acids suppress lipopolysaccharide-Induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-?B Pathway in RAW264.7 cells. Inflammation. 2012;35(5):1676–1684.10.1007/s10753-012-9484-z
  • Gearing AJ, Beckett P, Christodoulou M, et al. Processing of tumour necrosis factor-α precursor by metalloproteinases. Nature. 1994;370(6490):555–557.10.1038/370555a0
  • Malanovic N, Lohner K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochim Biophys Acta - Biomembr. 2016;1858(5):936–946.10.1016/j.bbamem.2015.11.004
  • Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–1345.10.1016/j.cell.2016.05.041
  • Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105(43):16731–16736.10.1073/pnas.0804812105
  • Quévrain E, Maubert MA, Michon C, et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut. 2016;65(3):415–425.10.1136/gutjnl-2014-307649
  • Milanski M, Degasperi G, Coope A, et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 Signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci. 2009;29(2):359–370.10.1523/JNEUROSCI.2760-08.2009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.