1,866
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Predicting Students’ Skills in the Context of Scientific Inquiry with Cognitive, Motivational, and Sociodemographic Variables

, , &

References

  • Adams, R. J., & Wu, M. L. (Eds.). (2002). PISA 2000 technical report. Paris: OECD.
  • Adams, W. K., & Wieman, C. E. (2011). Development and validation of instruments to measure learning of expert-like thinking. International Journal of Science Education, 33(9), 1289–1312. doi:10.1080/09500693.2010.512369
  • Alao, S., & Guthrie, J. T. (2010). Predicting conceptual understanding with cognitive and motivational variables. The Journal of Educational Research, 92(4), 243–254. doi:10.1080/00220679909597602
  • Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1–12. doi: 10.1023/A:1015171124982
  • Arnold, J. C., Kremer, K., & Mayer, J. (2014). Understanding students’ experiments—What kind of support do they need in inquiry tasks? International Journal of Science Education, 36(16), 2719–2749. doi:10.1080/09500693.2014.930209
  • Baraldi, A. N., & Enders, C. K. (2010). An introduction to modern missing data analyses. Journal of School Psychology, 48(1), 5–37. doi:10.1016/j.jsp.2009.10.001
  • Baumert, J., Lüdtke, O., Trautwein, U., & Brunner, M. (2009). Large-scale student assessment studies measure the results of processes of knowledge acquisition: Evidence in support of the distinction between intelligence and student achievement. Educational Research Review, 4(3), 165–176. doi:10.1016/j.edurev.2009.04.002
  • Bernholt, S., Neumann, K., & Nentwig, P. (Eds.). (2012). Making it tangible: Learning outcomes in science education. Münster: Waxmann.
  • Bloom, H. S., Hill, C. J., Black, A. R., & Lipsey, M. W. (2008). Performance trajectories and performance gaps as achievement effect-size benchmarks for educational interventions. Journal of Research on Educational Effectiveness, 1(4), 289–328. doi:10.1080/19345740802400072
  • Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Bortz, J., & Schuster, C. (2010). Statistik für Human- und Sozialwissenschaftler [Statistics for human and social scientists, 7th revised and extended edition] (7. vollständig überarbeitete und erweiterte Auflage). Berlin: Springer.
  • Bransford, J., Brown, A. L., & Cocking, R. R. (2000). How people learn: Brain, mind, experience, and school (Expanded ed.). Washington, DC: National Academy Press.
  • Bretz, S. L., & Linenberger, K. J. (2012). Development of the enzyme–substrate interactions concept inventory. Biochemistry and Molecular Biology Education, 40(4), 229–233. doi:10.1002/bmb.20622
  • Bybee, R. W., & McCrae, B. (2009). PISA science 2006: Implications for science teachers and teaching. Arlington, VA: NSTA Press.
  • Chamers, S. K., & Thomas, A. (1997). Gender, prior knowledge, interest, and experience in electricity and conceptual change text manipulations in learning about direct current. Journal of Research in Science Teaching, 34(2), 107–123. doi: 10.1002/(SICI)1098-2736(199702)34:2<107::AID-TEA2>3.0.CO;2-X
  • Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of the control of variables strategy. Child Development, 70(5), 1098–1120. doi: 10.1111/1467-8624.00081
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073–1091. doi:10.1002/sce.20164
  • Crawford, B. A. (2007). Learning to teach science as inquiry in the rough and tumble of practice. Journal of Research in Science Teaching, 44(4), 613–642. doi:10.1002/tea.20157
  • Cromley, J. G., Snyder-Hogan, L. E., & Luciw-Dubas, U. A. (2010). Reading comprehension of scientific text: A domain-specific test of the direct and inferential mediation model of reading comprehension. Journal of Educational Psychology, 102(3), 687–700. doi:10.1037/a0019452
  • von Davier, M., Gonzalez, E., & Mislevy, R. J. (2009). What are plausible values and why are they useful? In M. von Davier & D. Hastedt (Eds.), IERI monograph series: Vol. 2. IERI monograph series: Issues and methodologies in large scale assessments (pp. 9–36). Hamburg: IEA-ETS Research Institute.
  • Dean, D., & Kuhn, D. (2007). Direct instruction vs. discovery: The long view. Science Education, 91(3), 384–397. doi:10.1002/sce.20194
  • Dochy, F., Segers, M., & Buehl, M. M. (1999). The relation between assessment practices and outcomes of studies: The case of research on prior knowledge. Review of Educational Research, 69(2), 145–186. doi:10.3102/00346543069002145
  • Duggan, S., & Gott, R. (2000). Intermediate General National Vocational Qualification (GNVQ) science: A missed opportunity for a focus on procedural understanding? Research in Science & Technological Education, 18(2), 201–214. doi:10.1080/713694978
  • Eckhardt, M. (2010). Instruktionale Unterstützung beim Lernen mit Computersimulationen im Fach Biologie [Instructional support for learning with computer simulations in biology]. Kiel: IPN. Retrieved from http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00004981
  • Evans, M., Kelley, J., Sikora, J., & Treiman, D. J. (2010). Family scholarly culture and educational success: Books and schooling in 27 nations. Research in Social Stratification and Mobility, 28(2), 171–197. doi:10.1016/j.rssm.2010.01.002
  • Frey, A., Hartig, J., & Rupp, A. A. (2009). An NCME instructional module on booklet designs in large-scale assessments of student achievement: Theory and practice. Educational Measurement: Issues and Practice, 28(3), 39–53. doi:10.1111/j.1745-3992.2009.00154.x
  • Frey, A., Taskinen, P., Schütte, K., Prenzel, M., Artelt, C., Baumert, J., … Pekrun, R. (Eds.). (2009). PISA-2006-Skalenhandbuch: Dokumentation der Erhebungsinstrumente [PISA 2006 handbook of scales. Documentation of assessment instruments]. Münster: Waxmann.
  • Gott, R., & Duggan, S. (1995). Investigative work in the science curriculum. Developing science and technology education. Buckingham: Open University Press.
  • Hartig, J., & Höhler, J. (2009). Multidimensional IRT models for the assessment of competencies. Studies in Educational Evaluation, 35(2–3), 57–63. doi:10.1016/j.stueduc.2009.10.002
  • Häussler, P., & Hoffmann, L. (2000). A curricular frame for physics education: Development, comparison with students’ interests, and impact on students’ achievement and self-concept. Science Education Review Letters, 84(6), 689–705.
  • Häussler, P., & Hoffmann, L. (2002). An intervention study to enhance girls’ interest, self-concept, and achievement in physics classes. Journal of Research in Science Teaching, 39(9), 870–888. doi:10.1002/tea.10048
  • Heller, K., & Perleth, C. (2000). Kognitiver Fähigkeitstest für 4. bis 12. Klassen (KFT 4-12+ R) [Cognitive ability test]. Göttingen: Beltz-Testgesellschaft.
  • Hewson, M. G., & Hewson, P. W. (1983). Effect of instruction using students’ prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731–743. doi:10.1002/tea.3660200804
  • Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28–54. doi:10.1002/sce.10106
  • Justi, R. S. (2009). Learning how to model in science classroom: Key teacher's role in supporting the development of students’ modelling skills. educación química, 20(1), 32–40.
  • Klahr, D. (2000). Exploring science: The cognition and development of discovery processes. Cambridge, MA: MIT Press.
  • Koeppen, K., Hartig, J., Klieme, E., & Leutner, D. (2008). Current issues in competence modeling and assessment. Zeitschrift für Psychologie/Journal of Psychology, 216(2), 61–73. doi:10.1027/0044-3409.216.2.61
  • Köller, O., & Parchmann, I. (2012). Competencies: The German notation of learning outcomes. In S. Bernholt, K. Neumann, & P. Nentwig (Eds.), Making it tangible. Learning outcomes in science education (pp. 151–172). Münster: Waxmann.
  • Krapp, A., & Prenzel, M. (2011). Research on interest in science: Theories, methods, and findings. International Journal of Science Education, 33(1), 27–50. doi:10.1080/09500693.2010.518645
  • Kremer, K., Specht, C., Urhahne, D., & Mayer, J. (2014). Relationship in biology between nature of science and scientific inquiry. Journal of Biological Education (JBE), 48(1), 1–8. doi:10.1080/00219266.2013.788541
  • Kuhl, P., Siegle, T., & Lenski, A. E. (2013). Soziale Disparitäten [Social disparities]. In H. A. Pant, P. Stanat, U. Schroeders, A. Roppelt, T. Siegle, & C. Pöhlmann (Eds.), IQB-Ländervergleich 2012. Mathematische und naturwissenschaftliche Kompetenzen am Ende der Sekundarstufe I [IQB-inner-German-comparison. Competences at the end of the lower secondary school level] (pp. 275–296). Münster: Waxmann.
  • Kuhn, D., Black, J., Keselman, A., & Kaplan, D. (2000). The development of cognitive skills to support inquiry learning. Cognition and Instruction, 18(4), 495–523. doi:10.1207/S1532690XCI1804_3
  • van Laere, E., Aesaert, K., & van Braak, J. (2014). The role of students’ home language in science achievement: A multilevel approach. International Journal of Science Education, 36(16), 2772–2794. doi:10.1080/09500693.2014.936327
  • Lazonder, A. W., & Egberink, A. (2014). Children's acquisition and use of the control-of-variables strategy: Effects of explicit and implicit instructional guidance. Instructional Science, 42(2), 291–304. doi:10.1007/s11251-013-9284-3
  • Le Deist, F. D., & Winterton, J. (2005). What is competence? Human Resource Development International, 8(1), 27–46. doi:10.1080/1367886042000338227
  • Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014). Meaningful assessment of learners’ understandings about scientific inquiry—The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51(1), 65–83. doi:10.1002/tea.21125
  • Lederman, N. G. (2004). Syntax of nature of science within inquiry and science instruction. In L. B. Flick & N. G. Lederman (Eds.), Science & technology education library: v. 25. Scientific inquiry and nature of science. Implications for teaching, learning, and teacher education (pp. 301–317). Dordrecht: Kluwer Academic Publishers.
  • Lienert, G. A., & Raatz, U. (1998). Testaufbau und Testanalyse [Testconstruction and testanalysis] (6. Aufl., Studienausg). Weinheim: Beltz.
  • Lubben, F., Campbell, B., Buffler, A., & Allie, S. (2001). Point and set reasoning in practical science measurement by entering university freshmen. Science Education, 85(4), 311–327. doi:10.1002/sce.1012
  • Maerten-Rivera, J., Myers, N., Lee, O., & Penfield, R. (2010). Student and school predictors of high-stakes assessment in science. Science Education, 94(6), 937–962. doi:10.1002/sce.20408
  • McClary, L. M., & Bretz, S. L. (2012). Development and assessment of a diagnostic tool to identify organic chemistry students’ alternative conceptions related to acid strength. International Journal of Science Education, 34(15), 2317–2341. doi:10.1080/09500693.2012.684433
  • National Research Council. (2006). National science education standards. Washington, DC: Author.
  • Nehring, A. (2014). Wissenschaftliche Denk- und Arbeitsweisen im Fach Chemie. Eine kompetenzorientierte Modell- und Testentwicklung für den Bereich der Erkenntnisgewinnung: Unveröffentlichtes Dissertationsmanuskript. [Scientific reasoning and inquiry methods in the context of chemistry. The development of a competence-based test measuring skills in the field of scientific inquiry]. Unpublished inaugural dissertation.
  • Nehring, A., Nowak, K. H., Upmeier zu Belzen, A., & Tiemann, R. (2012). Doing inquiry in chemistry and biology. The context's influence on the students’ cognitive load. La Chimica nella Scuola, XXXIV-3, 253–258.
  • Nehring, A., Nowak, K. H., Upmeier zu Belzen, A., & Tiemann, R. (Submitted for publication). Towards a theory-based assessment of inquiry skills in the context of chemistry. Chemistry Education Research and Practice.
  • Nowak, K. H., Nehring, A., Tiemann, R., & Upmeier zu Belzen, A. (2013). Assessing students’ abilities in processes of scientific inquiry in biology using a paper-and-pencil test. Journal of Biological Education, 47(3), 182–188. doi:10.1080/00219266.2013.822747
  • O'Reilly, T., & McNamara, D. S. (2007). The impact of science knowledge, reading skill, and reading strategy knowledge on more traditional \‘High-Stakes\’ measures of high school students’ science achievement. American Educational Research Journal, 44(1), 161–196. doi:10.3102/0002831206298171
  • Organisation for Economic Co-operation and Development. (2006). Background characteristics, mathematics performance and learning environments of immigrant students. In OECD (Ed.), Where immigrant students succeed: A comparative review of performance and engagement in PISA 2003 (pp. 57–164). Paris: Author.
  • Organisation for Economic Co-operation and Development. (2013). Pisa 2012 assessment and analytical framework: Mathematics, reading, science, problem solving. Paris: Author.
  • Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079. doi:10.1080/0950069032000032199
  • Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1–4. doi:10.1207/S15326985EP3801_1
  • Pandey, S., & Elliott, W. (2010). Suppressor variables in social work research: Ways to identify in multiple regression models. Journal of the Society for Social Work and Research, 1(1), 28–40. doi:10.5243/jsswr.2010.2
  • PISA-Konsortium Deutschland (Ed.). (2006). PISA 2006 – Die Ergebnisse der dritten internationalen Vergleichsstudie [PISA 2006 - Results from the third international comparative study]. Münster: Waxmann.
  • Pyburn, D. T., & Pazicni, S. (2014). Applying the multilevel framework of discourse comprehension to evaluate the text characteristics of general chemistry textbooks. Journal of Chemical Education, 91(6), 778–783. doi:10.1021/ed500006u
  • Reid, N., & Skryabina, E. A. (2003). Gender and physics. International Journal of Science Education, 25(4), 509–536. doi:10.1080/0950069022000017270
  • Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Whiley.
  • Schauble, L., Glaser, R., Duschl, R. A., Schulze, S., & John, J. (1995). Students’ understanding of the objectives and procedures of experimentation in the science classroom. Journal of the Learning Sciences, 4(2), 131–166. doi:10.1207/s15327809jls0402_1
  • Schneider, W., Schlagmüller, M., & Ennemoser, M. (2007). LGVT 6-12. Lesegeschwindigkeits- und -verständnistest für die Klassen 6-12 [Test for reading skills and reading speed for grades 6 to 12]. Göttingen: Hogrefe.
  • Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland. (2005). Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss (Jahrgangsstufe 10) [National education standards for the subject chemistry]. München: Luchterhand.
  • Shapiro, A. M. (2004). How including prior knowledge as a subject variable may change outcomes of learning research. American Educational Research Journal, 41(1), 159–189. doi:10.3102/00028312041001159
  • Stark, R., & Gray, D. (2010). Gender preferences in learning science. International Journal of Science Education, 21(6), 633–643. doi:10.1080/095006999290480
  • Sweller, J. (1994). Cognitive load theory, learning difficulty and instructional design. Learning and Instruction, 4 (4), 295–312. doi: 10.1016/0959-4752(94)90003-5
  • Taboada, A. (2012). Relationships of general vocabulary, science vocabulary, and student questioning with science comprehension in students with varying levels of English proficiency. Instructional Science, 40(6), 901–923. doi:10.1007/s11251-011-9196-z
  • Tobias, S. (1994). Interest, prior knowledge, and learning. Review of Educational Research, 64(1), 37–54. doi: 10.3102/00346543064001037
  • Trier, U., Krüger, D., & Upmeier zu Belzen, A. (2012). Students’ versus scientists’ conceptions of models and modelling. In D. Krüger & M. Ekborg (Eds.), ERIDOB-proceedings: Research in biological education (pp. 103–115). Berlin: ERIDOB.
  • Walpuski, M., Ropohl, M., & Sumfleth, E. (2011). Students’ knowledge about chemical reactions—Development and analysis of standard-based test items. Chemistry Education Research and Practice, 12(2), 174. doi:10.1039/c1rp90022f
  • Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. S. Rychen & L. H. Sagalnik (Eds.), Definition and selection of competencies. Theoretical and conceptual foundations (pp. 45–65). Kirkland, WA: Hogrefe & Huber.
  • Wren, D., & Barbera, J. (2014). Psychometric analysis of the thermochemistry concept inventory. Chemistry Education Research and Practice, 15(3), 380. doi:10.1039/C3RP00170A
  • Wu, M. (2005). The role of plausible values in large-scale surveys. Studies in Educational Evaluation, 31(2–3), 114–128. doi:10.1016/j.stueduc.2005.05.005
  • Wu, M. L., Adams, R. J., Wilson, M. R., & Haldane, S. A. (2007). ACER ConQuest version 2.0: Generalised item response modelling software. Camberwell: ACER Press.
  • Zimmermann, C. (2000). The development of scientific reasoning skills. Developmental Review, 20, 99–149. doi: 10.1006/drev.1999.0497

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.