4,210
Views
53
CrossRef citations to date
0
Altmetric
Articles

What recent research on diagrams suggests about learning with rather than learning from visual representations in science

Pages 725-746 | Received 12 May 2015, Accepted 22 Feb 2016, Published online: 06 Apr 2016

References

  • Acher, A., & Arcà, M. (2010). Children’s representations in modeling scientific knowledge construction. In C. Andersen, N. Scheuer, M. P. Pérez Echeverría, & E. V. Teubal (Eds.), Representational systems and practices as learning tools (pp. 109–131). Boston, MA: Sense.
  • Achieve, Inc. (2013). Next generation science standards. Washington, DC: The National Academies Press.
  • Adadan, E., Irving, K. E., & Trundle, K. C. (2009). Impacts of multi-representational instruction on high school students’ conceptual understandings of the particulate nature of matter. International Journal of Science Education, 31, 1743–1775. doi:10.1080/09500690802178628
  • Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198. doi:10.1016/j.learninstruc.2006.03.001
  • Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In J. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 191–208). New York, NY: Springer.
  • Ainsworth, S., & Loizou, A. (2003). The effects of self-explaining when learning with text or diagrams. Cognitive Science, 27, 669–681. doi:10.1207/s15516709cog2704_5
  • Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333, 1096–1097. doi:10.1126/science.1204153
  • Amare, N., & Manning, A. (2007). The language of visuals: Text + graphics = visual rhetoric. IEEE Transactions on Professional Communication, 50, 57–70. doi:10.1109/TPC.2006.890851
  • Ametller, J., & Pintó, R. (2002). Students' reading of innovative images of energy at secondary school level. International Journal of Science Education, 24, 285–312. doi:10.1080/09500690110078914
  • Anstey, M., & Bull, G. (2006). Teaching and learning multiliteracies: Changing times, changing literacies. Newark, DE: International Reading Association.
  • Australian Curriculum, Assessment and Reporting Authority. (2015). The Australian curriculum: Science. Retrieved from http://www.australiancurriculum.edu.au/download/f10
  • Ayres, P., & Sweller, J. (2005). The split-attention principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 135–146). New York, NY: Cambridge University Press.
  • Bamberger, Y. M., & Davis, E. A. (2013). Middle-school science students' scientific modelling performances across content areas and within a learning progression. International Journal of Science Education, 35, 213–238. doi:10.1080/09500693.2011.624133
  • Bedward, J., Wiebe, E. N., Madden, L., Carter, M., & Minogue, J. (2009, April). Graphic literacy in elementary science education: Enhancing inquiry, engineering problem-solving and reasoning skills. Paper presented at the annual conference of the American Society for Engineering Education, Austin, TX.
  • Best, R., Dockrell, J., & Braisby, N. (2010). Children’s semantic representations of a science term. In C. Andersen, N. Scheuer, M. P. Pérez Echeverría, & E. V. Teubal (Eds.), Representational systems and practices as learning tools (pp. 93–108). Boston, MA: Sense.
  • Botzer, G., & Reiner, M. (2007). Imagery in physics learning — from physicists’ practice to naïve students’ understanding. In J. K. Gilbert (Ed.), Visualization in science education (pp. 147–168). Dordrecht, The Netherlands: Springer.
  • Britsch, S. (2013). Visual language and science understanding: A brief tutorial for teachers. Australian Journal of Language and Literacy, 35, 17–27.
  • Brooks, M. (2009). Drawing, visualisation and young children’s exploration of “big ideas”. International Journal of Science Education, 31, 319–341. doi:10-1080/09500690802595771
  • Butcher, K. (2006). Learning from text with diagrams: Promoting mental model development and inference generation. Journal of Educational Psychology, 98, 182–197. doi: 10.1037/0022-0663.98.1.182
  • Carolan, J., Prain, V., & Waldrip, B. (2008). Using representations for teaching and learning in science. Teaching Science, 54, 18–23.
  • Chittleborough, G., & Treagust, D. F. (2007). Correct interpretation of chemical diagrams requires transforming from one level of representation to another. Research in Science Education, 38, 463–482. doi: 10.1007/s11165-007-9059-4
  • Cinici, A. (2013). From caterpillar to butterfly: A window for looking into students' ideas about life cycle and life forms of insects. Journal of Biological Education, 47, 84–95. doi:10.1080/00219266.2013.773361
  • Clark, R. C., & Mayer, R. E. (2011). E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning (3rd ed.). San Francisco, CA: John Wiley & Sons.
  • Coleman, J. M., Bradley, L. G., & Donovan, C. A. (2012). Visual representations in second graders' information book compositions. The Reading Teacher, 66, 31–45. doi:10.1002/TRTR.01100
  • Coleman, J. M., McTigue, E. M., & Smolkin, L. B. (2011). Elementary teachers' use of graphical representations in science teaching. Journal of Science Teacher Education, 22, 612–643. doi:10.1007/s10972-010-9204-1
  • Colin, P., Chauvet, F., & Viennot, L. (2002). Reading images in optics: Students' difficulties and teachers' views. International Journal of Science Education, 24, 313–332. doi:10.1080/09500690110078923
  • Council of Ministers of Education, Canada (CMEC). (1997). Common framework of science learning outcomes K to 12. Retrieved from http://publications.cmec.ca/science/framework/
  • Cromley, J. G., Bergey, B. W., Fitzhugh, S., Newcombe, N., Wills, T. W., Shipley, T. F., & Tanaka, J. C. (2013). Effects of three diagram instruction methods on transfer of diagram comprehension skills: The critical role of inference while learning. Learning and Instruction, 26, 45–58. doi:10.1016/j.learninstruc.2013.01.003
  • Cromley, J. G., Snyder-Hogan, L. E., & Luciw-Dubas, U. A. (2010). Cognitive activities in complex science text and diagrams. Contemporary Educational Psychology, 35, 59–74. doi:10.1016/j.cedpsych.2009.10.002
  • Department for Education. (2013). Science programmes of study: Key stages 1 and 2. Retrieved from https://www.gov.uk/government/publications/national-curriculum-in-england-science-programmes-of-study
  • diSessa, A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22, 293–331. doi:10.1207/s1532690xci2203_2
  • diSessa, A. (2014). The construction of causal schemes: Learning mechanisms at the knowledge level. Cognitive Science, 38, 795–850. doi:10.1111/cogs.12131
  • Ehrlén, K. (2009). Drawings as representations of children’s conceptions. International Journal of Science Education, 31, 41–57. doi:10.1080/09500690701630455
  • Eilam, B., & Poyas, Y. (2008). Learning with multiple representations: Extending multimedia learning beyond the lab. Learning and Instruction, 18, 368–378. doi:10.1016/j.learninstruc.2007.07.003
  • Fang, Z. (2005). Scientific literacy: A systemic functional linguistics perspective. Science Education, 89, 335–347. doi:10.1002/sce.20050
  • Fang, Z. (2006). The language demands of science reading in middle school. International Journal of Science Education, 5, 491–520. doi:10.1080/09500690500339092
  • Fang, Z., & Schleppegrell, M. J. (2010). Disciplinary literacies across content areas: Supporting secondary reading through functional language analysis. Journal of Adolescent and Adult Literacy, 53, 587–597. doi:10.1598/JAAL.53.7.6
  • Fletcher, J. D., & Tobias, S. (2005). The multimedia principle. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 117–133). New York, NY: Cambridge University Press.
  • Furberg, A., Kluge, A., & Lundvigsen, S. (2013). Student sensemaking with science diagrams in a computer-based setting. Computer-Supported Collaborative Learning, 8, 41–64. doi:10.1007/s11412-013-9165-4
  • Gilbert, J. K. (1993). Models and modelling in science education. Hatfield, UK: Association for Science Education.
  • Gilbert, J. K. (2007). Visualization: A metacognitive skill in science and science education. In J. K. Gilbert (Eds.), Visualization in science education (pp. 9–27). Dordrecht, The Netherlands: Springer.
  • Gilbert, J. K. (2008). Visualization: An emergent field of practice and enquiry in science education. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 3–24). Dordrecht, The Netherlands: Springer.
  • Gilbert, J. K. (2010). The role of visual representations in the learning and teaching of science: An introduction. Asia-Pacific Forum on Science Learning and Teaching, 11(1), 1–19.
  • Gilbert, J. K., & Treagust, D. (Eds.). (2009). Multiple representations in chemical education. Dordrecht, The Netherlands: Springer. doi:10.1007/978-1-4020-8872-8
  • Goodman, N. (1968). The languages of art. Indianapolis, IL: Hackett.
  • Halliday, M. A. K. (2004). Three aspects of children’s language development: Learning language, learning through language, and learning about language (1980). In J. Webster (Ed.), The language of early childhood (pp. 308–326). New York, NY: Continuum.
  • Halliday, M. A. K., & Martin, J. (1993). Writing science: Literacy and discursive power. London: Falmer.
  • Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22, 1011–1026. doi:10.1080/095006900416884
  • Harskamp, E. G., Mayer, R. E., & Suhre, C. (2007). Does the modality principle for multimedia learning apply to science classrooms? Learning and Instruction, 17, 465–477. doi:10.1016/j.learninstruc.2007.09.010
  • Hegarty, M., Kriz, S., & Cate, C. (2003). The roles of mental animations and external animations in understanding mechanical systems. Cognition and Instruction, 21, 325–360. doi: 10.1207/s1532690xci2104_1
  • Hsin, M. C., Chien, S. P., Hsu, Y. S., Lin, C. Y., & Yore, L. D. (2016). Development and validation of a Taiwanese communication progression in science education. International Journal of Science and Mathematics Education, 14(1), 125–143. doi:10.1007/s10763-014-9589-y
  • Hubber, P., Tytler, R., & Haslam, F. (2010). Teaching and learning about force with a representational focus: Pedagogy and teacher change. Research in Science Education, 40, 5–28. doi:10.1007/s11165-009-9154-9
  • Jewitt, C., Kress, G., Ogborn, J., & Tsatsarelis, C. (2001). Exploring learning through visual, actional and linguistic communication: The multimodal environment of a science classroom. Educational Review, 53, 5–18. doi:10.1080/00131910120033600
  • Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13, 205–226. doi:10.1016/S0959-4752(02)00021-X
  • Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. K. Gilbert (Ed.), Visualizations in Science Education (pp. 121–146). Dordrecht, The Netherlands: Springer.
  • Kress, G. (2010). Multimodality: A social semiotic approach to contemporary communication. New York, NY: Routledge.
  • Kukkonen, J. E., Kärkkäinen, S., Dillon, P., & Keinonen, T. (2014). The effects of scaffolded simulation-based inquiry learning on fifth-graders' representations of the greenhouse effect. International Journal of Science Education, 36, 406–424. doi:10.1080/09500693.2013.782452
  • Lehrer, R., & Schauble, L. (2000). Developing model-based reasoning in mathematics and science. Journal of Applied Developmental Psychology, 21(1), 39–48. doi:10.1016/S0193-3973(99)00049-0
  • Lemke, J. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. R. Martin, & R. Veel (Eds.), Reading science: Critical and functional perspectives on discourses of science (pp. 87–113). New York, NY: Routledge.
  • Malter, M. (1947a). The ability of children to read a process-diagram. Journal of Educational Psychology, 38, 290–298. doi:10.1037/h0053917
  • Malter, M. (1947b). The ability of children to read cross-sections. Journal of Educational Psychology, 38, 157–166. doi:10.1037/h0058594
  • Malter, M. (1948a). The ability of children to read conventionalized diagrammatic symbols. Journal of Educational Psychology, 39, 27–34. doi: 10.1037/h0056189
  • Malter, M. (1948b). Children’s ability to read diagrammatic materials. The Elementary School Journal, 49, 98–102. doi: 10.1086/459015
  • Márquez, C., Izquierdo, M., & Espinet, M. (2006). Multimodal science teachers’ discourse in modeling the water cycle. Science Education, 90, 202–226. doi: 10.1002/sce.20100
  • Mayer, R. E. (2001). Multimedia learning. New York, NY: Cambridge University Press.
  • Mayer, R. E. (2005). The Cambridge handbook of multimedia learning. New York, NY: Cambridge University Press.
  • McCrudden, M., Schraw, G., Lehman, S., & Poliquin, A. (2007). The effect of causal diagrams on text learning. Contemporary Educational Psychology, 32, 367–388. doi:10.1016/j.cedpsych.2005.11.002
  • Moreno, R., & Mayer, R. E. (2002). Verbal redundancy in multimedia learning: When reading helps listening. Journal of Educational Psychology, 94, 156–163. doi: 10.1037/0022-0663.94.1.156
  • Moreno, R., & Valdez, A. (2005). Cognitive load and learning effects of having students organize pictures and words in multimedia environments: The role of student interactivity and feedback. Educational Technology Research & Development, 53, 35–45. doi: 10.1007/BF02504796
  • Mortimer, E. F., & Buty, C. (2010). What does “in the infinite” mean? In C. Andersen, N. Scheuer, M. P. Pérez Echeverría, & E. V. Teubal (Eds.), Representational systems and practices as learning tools (pp. 225–242). Boston, MA: Sense.
  • Muller, D., Sharma, M., & Reimann, P. (2008). Raising cognitive load with linear multimedia to promote conceptual change. Science Education, 92, 278–296. doi: 10.1002/sce.20244
  • National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common Core State Standards for English language arts and literacy in history/social studies, science, and technical subjects. Retrieved from http://www.corestandards.org/ELA-Literacy/
  • National Research Council. (1996). National science education standards. Washington, DC: National Academies Press.
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
  • National Research Council. (2014). Literacy for science: Exploring the intersection of the next generation science standards and common core for ELA standards: A workshop summary. Washington, DC: National Academy Press.
  • Nitz, S., Ainsworth, S., Nerdel, C., & Prechtl, H. (2014). Do student perceptions of teaching predict the development of representational competence and biological knowledge? Learning & Instruction, 31, 13–22. doi:10.1016/j.learninstruc.2013.12.003
  • Padalkar, S., & Ramadas, J. (2011). Using diagrams as an effective pedagogic tool in elementary astronomy. In S. Chunawala & M. Kharatmal (Eds.), Proceedings of epiSTEME-4 Conference, Mumbai, India (pp. 159–164). Retrieved from http://episteme4.hbcse.tifr.res.in/proceedings
  • Pappas, C. C., & Varelas, M. (2009). Multimodal books in science-literacy units: Language and visual images for making meaning. Language Arts, 86, 201–211.
  • Pérez Echeverría, M. P., Postigo, Y., & Pecharroman, A. (2010). Graphicacy: University students’ skills in translating information. In C. Andersen, N. Scheuer, M. P. Pérez-Echeverría, & E. V. Teubal (Eds.), Representational systems and practices as learning tools (pp. 209–224). Boston, MA: Sense.
  • Pintó, R., & Ametller, J. (2002). Students’ difficulties in reading images. Comparing results from four national research groups. International Journal of Science Education, 24, 333–341. doi:10.1080/09500690110078932
  • Prain, V., & Tytler, R. (2012). Learning through constructing representations in science: A framework of representational construction affordances. International Journal of Science Education, 34, 2751–2773. doi: 10.1080/09500693.2011.626462
  • Prain, V., & Waldrip, B. (2006). An exploratory study of teachers’ and students’ use of multi-modal representations of concepts in primary science. International Journal of Science Education, 28, 1843–1866. doi: 10.1080/09500690600718294
  • Reiss, M. J., Boulter, C., & Tunnicliffe, S. D. (2007). Seeing the natural world: A tension between pupils’ diverse conceptions as revealed by their visual representations and monolithic science lessons. Visual Communication, 6, 99–114. doi: 10.1177/1470357207071467
  • Richards, C. (2002). The fundamental design variables of diagramming. In M. Anderson, B. Meyer, & P. Olivier (Eds.), Diagrammatic representation and reasoning (pp. 85–102). London: Springer.
  • Rossman, G. B., & Yore, L.D. (2009). Stitching the pieces together to reveal the generalized patterns: Systematic research reviews, secondary reanalyses, case-to-case comparisons, and metasyntheses of qualitative research studies. In M. C. Shelley, II., L. D. Yore, & B. Hand (Eds.), Quality research in literacy and science education (pp. 575–601). Dordrecht, The Netherlands: Springer.
  • Schnotz, W. (2002). Towards an integrated view of learning from text and visual displays. Educational Psychology Review, 14(1), 102–120. doi:1040-726X/02/0300-0101/0
  • Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representations. Learning and Instruction, 13, 141–156. doi:10.1016/S0959-4752(02)00017-8
  • Smith, G. A., & Bermea, S. B. (2012). Using students' sketches to recognize alternative conceptions about plate tectonics persisting from prior instruction. Journal of Geoscience Education, 60, 350–359. doi:1089-9995/2012/60(4)/350/10
  • Stake, R. E. (2010). Qualitative research: Studying how things work. New York, NY: Guilford.
  • Tang, K. S., Delgado, C., & Moje, E. B. (2014). An integrative framework for the analysis of multiple and multimodal representations for meaning-making in science education. Science Education, 98(2), 305–326. doi:10.1002/sce.21099
  • Tippett, C. D. (2011). Exploring middle school students’ representational competence: Development and verification of a framework for learning with visual representations (Unpublished doctoral dissertation). University of Victoria, Victoria, BC, Canada. Retrieved from https://dspace.library.uvic.ca
  • Topsakal, U. U., & Oversby, J. (2013). What do scientist and non-scientist teachers notice about biology diagrams? Journal of Biological Education, 47, 21–28. doi:10.1080/00219266.2012.753102
  • Treagust, D. F. (2007). General instructional methods and strategies. In S. Abell & N. Lederman (Eds.), Handbook of research on science education (pp. 373–391). Mahwah, NJ: Lawrence Erlbaum.
  • Trumbo, J. (2000). Essay: Seeing science. Science Communication, 21, 379–391. doi: 10.1177/1075547000021004004
  • Tytler, R., Peterson, S., & Prain, V. (2006). Picturing evaporation: Learning science literacy through a particle representation. Teaching Science, 52, 12–17.
  • Tytler, R., Prain, V., & Peterson, S. (2007). Representational issues in students learning about evaporation. Research in Science Education, 37, 313–331. doi: 10.1007/s11165-006-9028-3
  • Unsworth, L. (2001). Teaching multiliteracies across the curriculum: Changing contexts of text and image in classroom practice. Philadelphia, PA: Open University Press.
  • Unsworth, L. (2004). Comparing school science explanations in books and computer-based formats: The role of images, image/text relations and hyperlinks. International Journal of Instructional Media, 31, 283–301.
  • Van Meter, P. (2001). Drawing construction as a strategy for learning from text. Journal of Educational Psychology, 93, 129–140. doi:10.1037//0022-0663.93.1.129
  • Van Meter, P., Aleksic, M., Schwartz, A., & Garner, J. (2006). Learner-generated drawing as a strategy for learning from content area text. Contemporary Educational Psychology, 31, 142–166. doi: 10.1016/j.cedpsych.2005.04.001
  • Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: Literature review and synthesis. Educational Psychology Review, 17(4), 285–325. doi: 10.1007/s10648-005-8136-3
  • Vekiri, I. (2002). What is the value of graphical displays in learning? Educational Psychology Review, 14(3), 261–312. doi: 10.1023/A:1016064429161
  • de Vries, E., Demetriadis, S., & Ainsworth, S. (2009). Learning with external representations: Headed towards a digital culture. In N. Balacheff, S. Ludvigsen, T. de Jong, A. Lazonder, & S. Barnes (Eds.), Technology enhanced learning – Principles and products (pp. 137–153). Heidelberg, Germany: Springer.
  • de Vries, E., & Lowe, R. (2010). Graphicacy: What Does the Learner Bring to a Graphic? Paper presented at the EARLI SIG 2: Comprehension of text and graphics. Tracing the mind: How do we learn from text and graphics?, Tübingen, Germany.
  • Waldrip, B., & Prain, V. (2012). Learning from and through representations in science. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 145–155). Dordrecht, The Netherlands: Springer. doi:10.1007/978-1-4020-9041-7_12
  • Waldrip, B., Prain, V., & Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in Science Education, 40, 65–80. doi:10.1007/s11165-009-9157-6
  • Yore, L. D. (2012). Science literacy for all - More than a slogan, logo, or rally flag! In K. C. D. Tan, M. Kim, & S. Hwang (Eds.), Issues and challenges in science education research: Moving forward (pp. 5–23). Dordrecht, The Netherlands: Springer.
  • Yore, L. D., Bisanz, G., & Hand, B. (2003). Examining the literacy component of science literacy: 25 years of language arts and science research. International Journal of Science Education, 25(6), 689–725. doi: 10.1080/09500690305018
  • Yore, L. D., Florence, M. K., Pearson, T. W., & Weaver, A. J. (2006). Written discourse in scientific communities: A conversation with two scientists about their views of science, use of language, role of writing in doing science, and compatibility between their epistemic views and language. International Journal of Science Education, 28(2/3), 109–141. doi:10.1080/09500690500336601
  • Yore, L. D., Hand, B. M., & Florence, M. K. (2004). Scientists’ views of science, models of writing, and science writing practices. Journal of Research in Science Teaching, 41(4), 338–369. doi: 10.1002/tea.20008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.