2,530
Views
9
CrossRef citations to date
0
Altmetric
Articles

Curating blood: how students’ and researchers’ drawings bring potential phenomena to light

&
Pages 2596-2620 | Received 18 Jul 2016, Accepted 24 Oct 2016, Published online: 18 Nov 2016

References

  • Ahmed, S. (2004). The cultural politics of emotion. Edinburgh: Edinburgh University Press.
  • Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333, 1096–1097. doi: 10.1126/science.1204153
  • American Association for the Advancement of Science. (2011). Vision and change in undergraduate biology education: A call to action. Retrieved May 2016, from http://visionandchange.org/files/2011/03/Revised-Vision-and-Change-Final-Report.pdf
  • Barberousse, A. (2013). What is the use of diagrams in theoretical modelling? Science in Context, 26(2), 345–362. doi: 10.1017/S0269889713000082
  • Baxter Magolda, M. B. (2014). Self-authorship. New Directions for Higher Education, 166, 25–33. doi: 10.1002/he.20092
  • Bruner, J. S. (1961). The act of discovery. Harvard Educational Review, 31, 21–32.
  • Burns, D. (2007). Systemic action research: A strategy for whole system change. Bristol: Policy Press.
  • Callon, M., & Latour, B. (1981). Unscrewing the big leviathan: How actors macro-structure reality and how sociologists help them to do so. In K. D. Knorr & A. V. Cicourel (Eds.), Advances in social theory and methodology: Towards the integration of macro and micro sociologies (pp. 277–303). Boston, MA: Routledge.
  • Cambrosio, A., Jacobi, D., & Keating, P. (1993). Ehrlich’s ‘beautiful pictures’ and the controversial beginnings of immunological imagery. Isis, 84, 662–699. doi: 10.1086/356636
  • Cambrosio, A., Jacobi, D., & Keating, P. (2006). Arguing with images: Pauling’s theory of antibody formation. In L. Pauwels (Ed.), Visual cultures of science: Rethinking representational practices in knowledge building and scientific communication (pp. 153–194). Hanover, NH: Dartmouth College Press.
  • Charmantier, I. (2011). Carl Linnaeus and the visual representation of nature. Historical Studies of Nature Science, 41(4), 365–404. doi: 10.1525/hsns.2011.41.4.365
  • Coopmans, C., Vertesi, J., Lynch, M., & Woolgar, S. (2014). Introduction: Representation in scientific practice revisited. In C. Coopmans, J. Vertesi, M. Lynch, & S. Woolgar (Eds.), Representation in scientific practice revisited (pp. 1–14). Cambridge, MA: MIT Press.
  • Damasio, A. (1994). Descartes’ error: Emotion, reason, and the human brain. New York, NY: Putnam.
  • Daston, L., & Galison, P. (2007). Objectivity. New York, NY: Zone.
  • DiCarlo, S. E. (2005). Cell biology should be taught as science is practiced. Nature Reviews Molecular and Cell Biology, 7(4), 294–296.
  • Dolan, E. L., & Collins, J. P. (2015). We must teach more effectively: Here are four ways to get started. Molecular Biology of the Cell, 26, 2151–2155. doi: 10.1091/mbc.E13-11-0675
  • Downes, S. M. (1992). The importance of models in theorizing: A deflationary semantic view. Philosophy of Science Association, 1, 142–153.
  • Dupré, J. (2012). Processes of life: Essays in the philosophy of biology. Oxford: Oxford University Press.
  • Elkins, J. (2007). Introduction. In J. Elkins (Ed.), Visual practices across the university (pp. 9–57). München: Verlag.
  • Flowers, E. (2015). Drawing bodies/drawing students: Making up relationships in curriculum reform. Sisyphus Journal of Education, 3(1), 96–135.
  • Fox Keller, E. (2002). Making sense of life: Explaining biological development with models, metaphors and machines. Cambridge, MA: Harvard University Press.
  • Gelfert, A. (2011). Model-based representation in scientific practice: New perspectives. Studies in History and Philosophy of Science, 42, 251–252. doi: 10.1016/j.shpsa.2010.11.032
  • Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. Boulter (Eds.), Developing models in science education (pp. 3–17). Dordrecht: Kluwer.
  • Habermas, J. (1978). Knowledge and human interests: A general perspective. London: Heinemann.
  • Habinek, T. (2011). Tentacular mind: Stoicism, neuroscience, and the configuration of physical reality. In B. M. Stafford (Ed.), A field guide to a new meta-field: Bridging the humanities-neuroscience divide (pp. 64–83). Chicago, IL: University of Chicago Press.
  • Hay, D. B., Weller, S., & Ashton, K. (2015). Researcher-led teaching: Embodiment of academic practice. Higher Education Review, 48, 25–39.
  • Hay, D. B., Williams, D., Stahl, D., & Wingate, R. J. (2013). Using drawings of the brain cell to exhibit expertise in neuroscience: Exploring the boundaries of experimental culture. Science Education, 97, 468–491. doi: 10.1002/sce.21055
  • Heckman, S. (2010). The material of knowledge: Feminist disclosures. Bloomington, IN: Indiana University Press.
  • Henderson, K. (1999). On line and on paper: Visual representations, visual culture, and computer graphics in design engineering. Cambridge, MA: MIT Press.
  • Hoffmann, C., & Whittmann, B. (2013). Introduction: Knowledge in the making: Drawing and writing as research techniques. Science in Context, 26(2), 203–213. doi: 10.1017/S0269889713000033
  • Hoffmann, R., Minkin, V. I., & Carpenter, B. K. (1996). Ockham’s razor and chemistry. Bulletin de la Société Chimique de France, 122, 117–130.
  • Hopwood, N. (1999). Giving body to embryos: Modelling, mechanism, and the microtome in late nineteenth-century anatomy. Isis, 90, 462–496. doi: 10.1086/384412
  • Karino, T., & Goldsmith, H. L. (1987). Rheological factors in thrombosis and haemostasis. In A. L. Bloom & D. P. Thomas (Eds.), Haemostasis and thrombosis (pp. 739–755). London: Churchill Livingstone.
  • Klein, U. (2001). Paper tools in experimental cultures. Studies in History and Philosophy of Science Part A, 32, 265–302. doi: 10.1016/S0039-3681(01)00010-3
  • Knorr-Cetina, K. (1999). Epistemic cultures: How the sciences make knowledge. Cambridge, MA: Harvard University Press.
  • Knuuttila, T. (2011). Modelling and representing: An artefactual approach to model-based representation. Studies in History and Philosophy of Science Part A, 42, 262–271. doi: 10.1016/j.shpsa.2010.11.034
  • Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology, 13, 159–175. doi: 10.1038/nri3399
  • Kress, G. (2003). Literacy in the new media age. London: Routledge.
  • Kress, G., & van Leeuwen, T. (2001). Multimodal discourse: The modes and media of contemporary communication. London: Hodder Education.
  • Kress, G., & van Leeuwen, T. (2006). Reading images: The grammar of visual design. London: Routledge.
  • Latour, B. (2006). Visualisation and cognition: Drawing things together. In H. Kuklick (Ed.), Knowledge and society: Studies in the sociology of cultures past and present (pp. 1–40). Bingley: Jai Press.
  • Latour, B., & Woolgar, S. (1986). Laboratory life: The construction of scientific facts. Princeton, NJ: Princeton University Press.
  • Lea, M. R., & Street, B. V. (1998). Student writing in higher education: An academic literacies approach. Studies in Higher Education, 23(2), 157–172. doi: 10.1080/03075079812331380364
  • Ley, K., Laudanna, C., Cybulsky, M. I., & Norshargh, S. (2007). Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nature Reviews Immunology, 7, 678–689. doi: 10.1038/nri2156
  • Lynch, M. (1988). The externalized retina: Selection and mathematization in the visual documentary of objects in the life sciences. Human Studies, 11(2/3), 85–101.
  • Lynch, M. (2006). The production of scientific images: Vision and re-vision in the history, philosophy, and sociology of science. In L. Pauwels (Ed.), Visual cultures of science: Rethinking representational practices in knowledge building and scientific communication (pp. 26–40). Hanover, NH: Dartmouth College Press.
  • Maerker, A. (2011). Model experts: Wax anatomies and enlightenment in Florence and Vienna, 1775–1815. Manchester: Manchester University Press.
  • Manthey, S., & Brewe, E. (2013). Towards university modelling instruction-biology: Adapting curriculum frameworks from physics to biology. CBE Life Sciences Education, 12, 206–214.
  • Mayer, J., & Land, R. (2003). Threshold concepts and troublesome knowledge: Linkages to ways of thinking and practising within the disciplines. Enhancing Teaching-Learning Environments in Undergraduate Courses: Occasion Report 4. Retrieved May 2016, from http://www.etl.tla.ed.ac.uk//docs/ETLreport4.pdf
  • Myers, N. (2008). Molecular embodiment and the body-work of modelling in protein crystallography. Social Studies of Science, 38(2), 163–199. doi: 10.1177/0306312707082969
  • Myers, N. (2015). Rendering life molecular: Models, modellers, and excitable matter. Durham: Duke University Press.
  • Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328, 463–466. doi: 10.1126/science.1183944
  • Pauwels, L. (2006). A theoretical framework for assessing visual representational practices in knowledge building and science communication. In L. Pauwels (Ed.), Visual cultures of science: Rethinking representational practices in knowledge building and scientific communication (pp. 1–25). Hanover, NH: Dartmouth College Press.
  • Perini, L. (2005). Explanation in two dimensions: Diagrams and biological explanation. Biology and Philosophy, 20, 257–269. doi: 10.1007/s10539-005-2562-y
  • Perini, L. (2012a). A semiotic analysis of figures in biology textbooks. In N. Anderson & M. R. Dietrich (Eds.), The educated eye: Visual culture and pedagogy in the life sciences (pp. 235–254). Hanover, NH: Dartmouth College Press.
  • Perini, L. (2012b). Image interpretation: Bridging the gap from mechanically produced image to representation. International Studies in the Philosophy of Science, 26(2), 153–170. doi: 10.1080/02698595.2012.703478
  • Pickering, A. (1995). The mangle of practice: Time agency and society. Chicago, IL: Chicago University Press.
  • Quillin, K., & Thomas, S. (2015). Drawing-to-learn: A framework for using drawings to promote model-based reasoning in biology. CBE-Life Sciences Education, 14, 1–16.
  • Radder, H. (2012). The material realization of science: From Habermas to experimentation and referential realism. Amsterdam: Springer.
  • Ranaweera, A. P. N., & Montplaisir, L. M. (2010). Students’ illustrations of the human nervous system as a formative assessment tool. Anatomical Science Education, 3, 227–233. doi: 10.1002/ase.162
  • Rapport, R. (2005). Nerve endings: The discovery of the synapse. New York, NY: Norton.
  • Rheinberger, H.-J. (2003). Scripts and scribbles. Modern Language Notes, 118(3), 622–636.
  • Rheinberger, H.-J. (1988). Towards a history of epistemic things: Synthesizing proteins in the test tube. Stanford, CA: Stanford University Press.
  • Rheinberger, H.-J. (2009). Recent science and its exploration: The case of molecular biology. Studies in History and Philosophy of Science, 40, 6–12. doi: 10.1016/j.shpsc.2008.12.002
  • Rheinberger, H.-J. (2010). An epistemology of the concrete: Twentieth-century histories of life. Durham: Duke University Press.
  • Snudd, P., Gutierrez, E., Koltsova, E. K., Kuwano, Y., Fukdua, S., Pospieszalska, M. K., … Ley, K. (2012). ‘Slings’ enable neutrophil rolling at high shear. Nature, 488, 399–405. doi: 10.1038/nature11248
  • Sreeramkumar, V., Adrover, J. M., Ballesteros, I., Cuartero, M. I., Rossaint, J., Bibao, I., … Hidalgo, A. (2014). Neutrophils scan for activated platelets to initiate inflammation. Science, 346, 1234–1238. doi: 10.1126/science.1256478
  • Stafford, B. M. (1993). Body criticism: Imagining the unseen in enlightenment art and medicine. Cambridge, MA: MIT press.
  • Stafford, B. M. (2007). Echo objects: The cognitive work of images. Chicago, IL: University of Chicago Press.
  • Stafford, B. M. (2011). Crystal and smoke: Putting image back in mind. In B. M. Stafford (Ed.), A field guide to a new meta-field: Bridging the humanities-neuroscience divide (pp. 1–63). Chicago, IL: University of Chicago Press.
  • Trujillo, C. M., Anderson, T. R., & Pelaez, N. J. (2015). A model of how different biology experts explain molecular and cellular mechanisms. CBE Life Sciences Education, 14, 1–13.
  • Weisberg, M. (2012). Simulation and similarity: Using models to understand the world. Oxford: Oxford University Press.
  • Whittmann, B. (2013). Outlining species: Drawing as a research technique in contemporary biology. Science in Context, 26(2), 363–391. doi: 10.1017/S0269889713000094
  • Wingate, R. J. (2010). What does research-led teaching mean? In S. Lygo-Baker (Ed.), Proceedings of the excellence in teaching conference 2009, King’s College London (pp. 89–96). London: King’s Learning Institute.
  • Wingate, R. J. (2011). Art, science and imagination: Visions of the brain cell. In L. Kesner (Ed.), Images of the mind (pp. 96–114). Dresden: Stiftung Deutches Hygiene-Museum.
  • Wingate, R. J., & Kwint, M. (2006). Imagining the brain cell: The neuron in visual culture. Nature Reviews Neuroscience, 7, 745–752. doi: 10.1038/nrn1973