6,332
Views
13
CrossRef citations to date
0
Altmetric
Articles

Secondary school students’ perceptions of working life skills in science-related careers

ORCID Icon, , , &
Pages 1339-1352 | Received 02 Dec 2016, Accepted 10 May 2017, Published online: 25 May 2017

References

  • Andersen, L., & Ward, T. J. (2014). Expectancy-value models for the STEM persistence plans of ninth-grade, high-ability students: A comparison between black, Hispanic, and white students. Science Education, 98, 216–242. doi: 10.1002/sce.21092
  • Archer, L., DeWitt, J., & Dillon, J. (2014). ‘It didn’t really change my opinion’: Exploring what works, what doesn’t and why in a school science, technology, engineering and mathematics careers intervention. Research in Science & Technological Education, 32(1), 35–55. doi: 10.1080/02635143.2013.865601
  • Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., & Rumble, M. (2012). Defining twenty-first century skills. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 17–66). Dordrecht: Springer.
  • Bybee, R. W., & Fuchs, B. (2006). Preparing the 21st century workforce: A new reform in science and technology education. Journal of Research in Science Teaching, 43(4), 349–352. doi: 10.1002/tea.20147
  • Cleaves, A. (2005). The formation of science choices in secondary school. International Journal of Science Education, 27(4), 471–486. doi: 10.1080/0950069042000323746
  • DiGironimo, N. (2011). What is technology? Investigating student conceptions about the nature of technology. International Journal of Science Education, 33(10), 1337–1352. doi: 10.1080/09500693.2010.495400
  • Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 62(1), 107–115. doi: 10.1111/j.1365-2648.2007.04569.x
  • European Commission. (2010). Employers’ perception of graduate employability. Analytical report. Retrieved from http://ec.europa.eu/public_opinion/flash/fl_304_en.pdf
  • Finnish National Board of Education. (2004). National core curriculum for basic education 2004. Retrieved from http://www.oph.fi/english/curricula_and_qualifications/basic_education/curricula_2004
  • Finnish National Board of Education. (2014). National core curriculum for basic education 2014. Helsinki: Finnish National Board of Education.
  • Gebbels, S., Evans, S. M., & Delany, J. E. (2011). Promoting environmental citizenship and corporate social responsibility through a school/industry/university partnership. Journal of Biological Education, 45(1), 13–19. doi: 10.1080/00219266.2011.537834
  • Holmegaard, H. T., Madsen, L. M., & Ulriksen L. (2014). To choose or not to choose science: Constructions of desirable identities among young people considering a STEM higher education programme. International Journal of Science Education, 36(2), 186–215. doi: 10.1080/09500693.2012.749362
  • Jang, H. (2016). Identifying 21st century STEM competencies using workplace data. Journal of Science Education and Technology, 25, 284–301. doi: 10.1007/s10956-015-9593-1
  • Jones, A. (2009). Redisciplining generic attributes: The disciplinary context in focus. Studies in Higher Education, 34, 85–100. doi: 10.1080/03075070802602018
  • Kallioinen, O. (2010). Defining and comparing generic competences in higher education. European Educational Research Journal, 9(1), 56–68. doi: 10.2304/eerj.2010.9.1.56
  • Kiljunen, P. (2013). Finnish science barometer 2013. Porvoo: Kirjapaino Uusimaa.
  • Kramer, M., Tallant, K., Goldberger, A., & Lund, F. (2014). The global stem paradox. Retrieved from http://globalstemalliance.org/media/filer_public/b8/68/b8683358-027a-4015-8807-811301744bbd/nyas_white_papers_ssf.pdf
  • Lavonen, J., Gedrovics, J., Byman, R., Meisalo, V., Juuti, K., & Uitto, A. (2008). Students` motivational orientations and career choice in science and technology: A comparative investigation in Finland and Latvia. Journal of Baltic Science Education, 7(2), 86–102. Retrieved from Ebscohost (Accession no. 35234032)
  • Lee, S., & Fang, X. (2008). Perception gaps about skills requirement for entry-level is professionals between recruiters and students: An exploratory study. Information Resources Management Journal, 21(3), 39–63. doi: 10.4018/irmj.2008070103
  • Lim, Y.-M., Lee, T., Yap, C., & Ling, C. (2016). Employability skills, personal qualities, and early employment problems of entry-level auditors: Perspectives from employers, lecturers, auditors, and students. Journal of Education for Business, 91(4), 185–192. doi: 10.1080/08832323.2016.1153998
  • Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among U.S. students. Science Education, 95, 877–907. doi: 10.1002/sce.20441
  • Masnick, A. M., Stavros Valenti, S., Cox, B. D., & Osman, C. J. (2010). A multidimensional scaling analysis of students’ attitudes about science careers. International Journal of Science Education, 32(5), 653–667. doi: 10.1080/09500690902759053
  • National Science Board. (2014). Science and engineering indicators 2014. Arlington, VA: National Science Foundation.
  • Organisation for Economic Co-operation and Development. (2007). PISA 2006: Science competencies for tomorrow’s world (Vol. 1). Author.
  • Osborne, J., & Collins, S. (2001). Pupils’ views of the role and value of the science curriculum: A focus group study. International Journal of Science Education, 23(4), 441–467. doi: 10.1080/09500690010006518
  • Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. London: Nuffield Foundation.
  • P21. (2015). Partnership for 21st century skills framework definitions. Retrieved from http://www.p21.org/storage/documents/docs/P21_Framework_Definitions_New_Logo_2015.pdf
  • Patton, M. Q. (1999). Enhancing the quality and credibility of qualitative analysis. Health Services Research, 34(5) ( Part II), 1189–1208. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1089059/pdf/hsresearch00022-0112.pdf
  • Pešaković, D., Flogie, A., & Aberšek, B. (2014). Development and evaluation of a competence-based teaching process for science and technology education. Journal of Baltic Science Education, 13(5), 740–755. Retrieved from http://www.scientiasocialis.lt/jbse/files/pdf/vol13/740755.Pesakovic_JBSE_Vol.13_No.5.pdf
  • Pellegrino, J. W., & Hilton, M. L. (2012). Education for life and work: Developing transferable knowledge and skills in the 21st century. Washington, DC: National Academies Press.
  • Radermacher, A., & Walia, G. (2013). Gaps between industry expectations and the abilities of graduates. In T. Camp, P. Tymann, J. D. Dougherty, & K. Nagel (Eds.), Proceeding of the 44th ACM technical symposium on computer science education (pp. 525–530). New York, NY: ACM.
  • Rosenberg, S., Heimler, R., & Morote, E.-S. (2012). Basic employability skills: A triangular design approach. Education + Training, 54(1), 7–20. doi: 10.1108/00400911211198869
  • Schummer, J., & Spector, T. (2007). Popular images versus self-images of science: Visual representations of science in clipart cartoons and internet photographs. In P. Weingart & B. Hüppauf (Eds.), Science images and popular images of the sciences (pp. 69–95). London: Routledge.
  • Stenström, M.-L. (2006). Polytechnic graduates working-life skills and expertise. In P. Tynjälä, J. Välimaa, & G. Boulton-Lewis (Eds.), Higher education and working life. Collaborations, confrontations and challenges (pp. 89–102). Amsterdam: Elsevier.
  • Tai, R., Liu, C., Maltese, A., & Fan, X. (2006). CAREER CHOICE: Enhanced: Planning early for careers in science. Science, 312(5777), 1143–1144. doi: 10.1126/science.1128690
  • Wang, F., & Hannafin, M. (2005). Design-based research and technology-enhanced learning environments. Educational Technology Research and Development, 53(4), 5–23. doi: 10.1007/BF02504682