1,255
Views
2
CrossRef citations to date
0
Altmetric
Articles

Should students design or interact with models? Using the Bifocal Modelling Framework to investigate model construction in high school science

ORCID Icon, &
Pages 867-893 | Received 02 Aug 2017, Accepted 12 Mar 2018, Published online: 16 Apr 2018

References

  • Blikstein, P. (2010). Connecting the science classroom and tangible interfaces: The bifocal modeling framework. Proceedings of the 9th international conference of the learning sciences, ICLS 2012 (pp. 128–130), Chicago, IL.
  • Blikstein, P. (2012). Bifocal modeling: A study on the learning outcomes of comparing physical and computational models linked in real time. Proceedings of the 14th ACM international conference on multimodal interaction ICMI 2012 (pp. 257–264), Santa Monica, CA.
  • Blikstein, P. (2014). Bifocal modeling: Comparing physical and computational models linked in real time. In A. Nijholt (Ed.), Playful learning interfaces (pp. 317–350). Singapore: Springer.
  • Blikstein, P., Fuhrmann, T., Greene, D., & Salehi, S. (2012, June). Bifocal modeling: Mixing real and virtual labs for advanced science learning. Proceedings of the 11th international conference on interaction design and children (pp. 296–299). Bremen: ACM.
  • Blikstein, P., & Wilensky, U. (2006, July). The missing link: A case study of sensing-and-modeling toolkits for constructionist scientific investigation. Sixth IEEE international conference on advanced learning technologies (ICALT'06) (pp. 980–982). Washington, DC: IEEE.
  • Blikstein, P., & Wilensky, U. (2007). Bifocal modeling: A framework for combining computer modeling, robotics and real-world sensing. Annual meeting of the American Educational Research Association (AERA 2007), Chicago, IL.
  • Blikstein, P. (2012). Bifocal modeling: a study on the learning outcomes of comparing physical and computational models linked in real time. Proceedings of the 14th ACM International Conference on Multimodal Interaction (ICMI), Santa Monica, CA.
  • Bryce, C. M., Baliga, V. B., Nesnera, K. L. D., Fiack, D., Goetz, K., Tarjan, L. M., … Ash, D. (2016). Exploring models in the biology classroom. The American Biology Teacher, 78(1), 35–42. doi: 10.1525/abt.2016.78.1.35
  • Cheng, M. F., Lin, J. L., Chang, Y. C., Li, H. W., Wu, T. Y., & Lin, D. M. (2014). Developing explanatory models of magnetic phenomena through model-based inquiry. Journal of Baltic Science Education, 13(3), 351–360.
  • Chiu, M. H., & Lin, J. W. (2005). Promoting fourth graders’ conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42(4), 429–464. doi: 10.1002/tea.20062
  • Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041–1053. doi: 10.1080/095006900416901
  • D’Angelo, C., Rutstein, D., Harris, C., Bernard, R., Borokhovski, E., & Haertel, G. (2014). Simulations for STEM learning: Systematic review and meta-analysis. Menlo Park, CA: SRI International.
  • Fuhrmann, T., Greene, D., Salehi, S., & Blikstein, P. (2012). Bifocal biology: The link between real and virtual experiments. Proceedings of the constructionism 2012 conference, Athens.
  • Fuhrmann, T., Salehi, S., & Blikstein, P. (2014). A tale of two worlds: Using bifocal modeling to find and resolve ‘discrepant events’ between physical experiments and virtual models in biology. Proceedings of the international conference of the learning sciences (ICLS 2014), Madison, WI.
  • Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education (Vol. 9). Cham: Springer International.
  • Halloun, I. A. (2011). From modeling schemata to the profiling schema: Modeling across the curricula for profile shaping education. In Models and modeling (pp. 77–96). Dordrecht: Springer.
  • Hokayem, H., & Schwarz, C. (2014). Engaging fifth graders in scientific modeling to learn about evaporation and condensation. International Journal of Science and Mathematics Education, 12(1), 49–72. doi: 10.1007/s10763-012-9395-3
  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70.
  • Holmes, N. G., Wieman, C. E., & Bonn, D. A. (2015). Teaching critical thinking. Proceedings of the National Academy of Sciences, 112(36), 11199–11204. doi: 10.1073/pnas.1505329112
  • Koponen, I. T. (2007). Models and modelling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16(7), 751–773. doi: 10.1007/s11191-006-9000-7
  • Krell, M., Zu Belzen, A. U., & Krüger, D. (2014). Students’ levels of understanding models and modelling in biology: Global or aspect-dependent? Research in Science Education, 44(1), 109–132. doi: 10.1007/s11165-013-9365-y
  • Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–879). Mahwah, NJ: Erlbaum.
  • Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy: Supporting development in learning in contexts. In W. Damon, R. Lerner, K. A. Renninger, & E. Sigel (Eds.), Handbook of child psychology (6th ed., Vol. 4, pp. 153–196). Hoboken, NJ: Wiley.
  • Lin, J. W., & Chiu, M. H.. (2010). The mismatch between students’ mental models of acids/bases and their sources and their teacher’s anticipations thereof. Journal of Science Education, 32(12), 1617–1646. doi: 10.1080/09500690903173643
  • Moore, E. B., Chamberlain, J. M., Parson, R., & Perkins, K. K. (2014). PhET interactive simulations: Transformative tools for teaching chemistry. Journal of Chemical Education, 91(8), 1191–1197. doi: 10.1021/ed4005084
  • National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press.
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
  • National Research Council. (2013). Developing assessments for the Next Generation Science Standards. Washington, DC: National Academies Press.
  • Next Generation Science Standards. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.
  • Odom, A. L. (1995). Secondary & college biology students' misconceptions about diffusion & osmosis. The American Biology Teacher, 57(7), 409–415. doi: 10.2307/4450030
  • Pallant, A., & Tinker, R. F. (2004). Reasoning with atomic-scale molecular dynamic models. Journal of Science Education and Technology, 13(1), 51–66. doi: 10.1023/B:JOST.0000019638.01800.d0
  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.
  • PhET. Free online physics, chemistry, biology, earth science and math simulations. Retrieved from http://phet.colorado.edu
  • Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners’ epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486–511. doi: 10.1002/tea.20415
  • Russ‌‌, R. S., Scherr‌‌‌‌, R. E., Hammer, D., & Mikeska, J. (2008). Recognizing mechanistic reasoning in student scientific inquiry: A framework for discourse analysis developed from philosophy of science. Science Education, 92(3), 499–525. doi: 10.1002/sce.20264
  • Sanger, M. J., ‌Brecheisen, D. M., & Hynek, B. M. (2001). Can computer animations affect college biology students' conceptions about diffusion & osmosis? The American Biology Teacher, 63(2), 104–109. doi: 10.1662/0002-7685(2001)063[0104:CCAACB]2.0.CO;2
  • Schwarz, C. V., Akcaoglu, M., Ke, L., & Zhan, L. (2013, April). Fifth grade students’ engagement in modeling practice across content areas: What epistemologies in practice change over time and how?. Paper presented at the annual meeting of the American Educational Research Association, San Francisco.
  • Schwarz, C. V., Gunckel, K. L., Smith, E. L., Covitt, B. A., Bae, M., Enfield, M., & Tsurusaki, B. K. (2008). Helping elementary preservice teachers learn to use curriculum materials for effective science teaching. Science Education, 92(2), 345–377. doi: 10.1002/sce.20243
  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., … Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. doi: 10.1002/tea.20311
  • Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165–205. doi: 10.1207/s1532690xci2302_1
  • Seel, N. M. (2017). Model-based learning: A synthesis of theory and research. Educational Technology Research and Development, 65(4), 931–966. doi: 10.1007/s11423-016-9507-9
  • Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337–1370. doi: 10.1080/09500693.2011.605182
  • Stavy, R., & Tirosh, D. (2000). How students (mis-)understand science and mathematics: Intuitive rules. New York: Teachers College Press.
  • Stevens, S. Y., Delgado, C., & Krajcik, J. S. (2010). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47(6), 687–715. doi: 10.1002/tea.20324
  • Stewart, J., Cartier, J. L., & Passmore, C. M. (2005). Developing understanding through model-based inquiry. In M. S. Donovan & J. D. Bransford (Eds.), How students learn (pp. 515–565). Washington, DC: National Research Council.
  • Stieff, M., & McCombs, M. (2006, June). Increasing representational fluency with visualization tools. Proceedings of the 7th international conference on learning sciences (pp. 730–736). Mahwah, NJ: Erlbaum.
  • Tinker, R., & Xie, Q. (2008). Applying computational science to education: The molecular workbench paradigm. Computing in Science and Engineering, 10(5), 24–27. doi: 10.1109/MCSE.2008.108
  • Treagust, D., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353–1368. doi: 10.1080/0950069032000070306
  • Wilensky, U. (1999). Netlogo [computer software]. Center for connected learning and computer-based modeling. Evanston, IL: Northwestern University.
  • Wilkerson, M. H., Shareff, R., Laina, V., & Gravel, B. (2018). Epistemic gameplay and discovery in computational model-based inquiry activities. Instructional Science, 46(35), 1–26.
  • Wilkerson-Jerde, M. H., Gravel, B. E., & Macrander, C. A. (2013). SiMSAM: An integrated toolkit to bridge student, scientific, and mathematical ideas using computational media. Proceedings of the international conference of computer supported collaborative learning (CSCL 2013) (Vol. 2, pp. 379–381), Madison, WI.
  • Wilkerson-Jerde, M. H., Wagh, A., & Wilensky, U. (2015). Balancing curricular and pedagogical needs in computational construction kits: Lessons from the DeltaTick project. Science Education, 99(3), 465–499. doi: 10.1002/sce.21157
  • Wilkerson-Jerde, M., Wagh, A., & Wilensky, U. (2015). Balancing curricular and pedagogical needs in computational construction kits: Lessons from the DeltaTick project. Science Education, 99(3), 465–499. doi: 10.1002/sce.21157
  • Windschitl, M., Thompson, J., & Braaten, M. (2008). How novice science teachers appropriate epistemic discourses around model-based inquiry for use in classrooms. Cognition and Instruction, 26(3), 310–378. doi: 10.1080/07370000802177193

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.