6,566
Views
23
CrossRef citations to date
0
Altmetric
Articles

Key topics for quantum mechanics at secondary schools: a Delphi study into expert opinions

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 349-366 | Received 21 Dec 2017, Accepted 15 Nov 2018, Published online: 01 Dec 2018

References

  • Aikenhead, G. S. (2003). Review of research on humanistic perspectives in science curricula. Paper presented at the ESERA, Noordwijkerhout, The Netherlands.
  • Aikenhead, G. S. (2005). Research into STS science education. Educación Química, 16(3), 384–397.
  • Asikainen, M. A., & Hirvonen, P. E. (2009). A study of pre- and in-service physics teachers’ understanding of photoelectric phenomenon as part of the development of a research-based quantum physics course. American Journal of Physics, 77(7), 658–666.
  • Asikainen, M. A., & Hirvonen, P. E. (2014). Probing pre-and in-service physics teachers’ knowledge using the double-slit thought experiment. Science & Education, 23(9), 1811–1833.
  • Bybee, R., McCrae, B., & Laurie, R. (2009). Pisa 2006: An assessment of scientific literacy. Journal of Research in Science Teaching, 46(8), 865–883.
  • Clayton, M. J. (1997). Delphi: A technique to harness expert opinion for critical decision-making tasks in education. Educational Psychology, 17(4), 373–386.
  • Commissie Vernieuwing Natuurkundeonderwijs havo/vwo. (2010). Nieuwe natuurkunde, advies-examenprogramma’s voor havo en vwo [Contemporary physics, recommended exam programs for upper secondary school]. Amsterdam: Nederlandse Natuurkundige Vereniging.
  • DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582–601.
  • Duit, R., Gropengießer, H., Kattmann, U., Komorek, M., & Parchmann, I. (2012). The model of educational reconstruction – A framework for improving teaching and learning science. In D. Jorde & J. Dillon (Eds.), The world of science education: Science education research and practice in Europe (pp. 13–37). Rotterdam: Sense Publishers.
  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688.
  • Dür, W., & Heusler, S. (2014). Visualization of the invisible: The qubit as key to quantum physics. The Physics Teacher, 52(8), 489–492.
  • Escalada, L. T., Rebello, N. S., & Zollman, D. A. (2004). Student explorations of quantum effects in LEDs and luminescent devices. The Physics Teacher, 42(3), 173–179.
  • Henriksen, E. K., Bungum, B., Angell, C., Tellefsen, C. W., Fragat, T., & Vetleseter Boe, M. (2014). Relativity, quantum physics and philosophy in the upper secondary curriculum: Challenges, opportunities and proposed approaches. Physics Education, 49(6), 678–684.
  • Hoekzema, D., van den Berg, E., Schooten, G., & van Dijk, L. (2007). The particle/wave-in-a-box model in Dutch secondary schools. Physics Education, 42(4), 391–398.
  • Holbrook, J., & Rannikmae, M. (2009). The meaning of scientific literacy. International Journal of Environmental & Science Education, 4(3), 275–288.
  • Johnston, I. D., Crawford, K., & Fletcher, P. R. (1998). Student difficulties in learning quantum mechanics. International Journal of Science Education, 20(4), 427–446.
  • Karakostas, V., & Hadzidaki, P. (2005). Realism vs. Constructivism in contemporary physics: The impact of the debate on the understanding of quantum theory and its instructional process. Science & Education, 14(7), 607–629.
  • Kohnle, A (2015). Research-based interactive simulations to support quantum mechanics learning and teaching. In C. Fazio & R.M. Sperandeo-Mineo (Eds.), Proceedings GIREP-MPTL conference 2014: Teaching/learning physics: Integrating research into practice (pp. 29–40). Palermo: Università degli Studi di Palermo.
  • Kraska-Miller, M. (2013). Nonparametric statistics for social and behavioral sciences (pp. 191). Alabama: CRC Press.
  • Krijtenburg-Lewerissa, K., Pol, H. J., Brinkman, A., & van Joolingen, W. R. (2017). Insights into teaching quantum mechanics in secondary and lower undergraduate education. Physical Review Physics Education Research, 13, 010109.
  • Laherto, A. (2010). An analysis of the educational significance of nanoscience and nanotechnology in scientific and technological literacy. Science Education International, 21(3), 160–175.
  • Lautesse, P., Vila Valls, A., Ferlin, F., Héraud, J. L., & Chabot, H. (2015). Teaching quantum physics in upper secondary school in France. Science & Education, 24(7–8), 937–955.
  • Malgieri, M., Onorato, P., & De Ambrosis, A. (2017). Test on the effectiveness of the sum over paths approach in favoring the construction of an integrated knowledge of quantum physics in high school. Physical Review Physics Education Research, 13(1), 010101.
  • Mashhadi, A., & Woolnough, B. (1999). Insights into students’ understanding of quantum physics: Visualizing quantum entities. European Journal of Physics, 20(6), 511–516.
  • McDermott, L. C. (2001). Physics education research—The key to student learning [Oersted Medal lecture]. American Journal of Physics, 69(11), 1127–1137.
  • McKagan, S. B., Perkins, K. K., & Wieman, C. E. (2010). Design and validation of the quantum mechanics conceptual survey. Physical Review Special Topics – Physics Education Research, 6(2), 020121.
  • Michelini, M., Ragazzon, R., Santi, L., & Stefanel, A. (2000). Proposal for quantum physics in secondary school. Physics Education, 35(6), 406–410.
  • Michelini, M., Ragazzon, R., Santi, L., & Stefanel, A. (2004). Discussion of a didactic proposal on quantum mechanics with secondary school students. Nuovo Cimento della Societa Italiana di Fisica C, 27(5), 555–567.
  • Michelini, M., Ragazzon, R., Santi, L., & Stefanel, A. (2007). Learning paths of high school students in quantum mechanics. In R. Jurdana-Šepić, V. Labinac, M. Žuvić-Butorac, & A. Sušac (Eds.), Proceedings GIREP conference 2007: Frontiers of physics Education (pp. 337–343). Rijeka: Zlatni rez.
  • Michelini, M., Santi, L., & Stefanel, A. (2015). Teaching modern physics in secondary school. Frontiers of Fundamental Physics, 14, 231.
  • Millar, R. (2006). Twenty first century science: Insights from the design and implementation of a scientific literacy approach in school science. International Journal of Science Education, 28(13), 1499–1521.
  • Müller, R., & Wiesner, H. (2002). Teaching quantum mechanics on an introductory level. American Journal of Physics, 70(3), 200–209.
  • OECD. (2006). Assessing scientific, reading and mathematical literacy, A framework for PISA 2006. Paris: OECD Publishing.
  • Ogborn, J. (2006). A first introduction to quantum behavior. In E. van den Berg, A. L. Ellermeijer, & O. Slooten (Eds.), Proceedings GIREP conference 2006: Modelling in physics and physics education (pp. 230–236). Amsterdam: University of Amsterdam.
  • Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: An example, design considerations and applications. Information & Management, 42(1), 15–29.
  • Olsen, R. V. (2002). Introducing quantum mechanics in the upper secondary school: A study in Norway. International Journal of Science Education, 24(6), 565–574.
  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.
  • Redish, E. F. (1994). Implications of cognitive studies for teaching physics. American Journal of Physics, 62, 796–803.
  • Reeves, G., & Jauch, L. R. (1978). Curriculum development through Delphi. Research in Higher Education, 8(2), 157–168.
  • Rossouw, A., Hacker, M., & de Vries, M. J. (2010). Concepts and contexts in engineering and technology education: An international and interdisciplinary Delphi study. International Journal of Technology and Design Education, 21(4), 409–424.
  • Sakhnini, S., & Blonder, R. (2015). Essential concepts of nanoscale science and technology for high school students based on a Delphi study by the expert community. International Journal of Science Education, 37(11), 1699–1738.
  • Schmidt, R. C. (1997). Managing Delphi surveys using nonparametric statistical techniques. Decision Sciences, 28(3), 763–774.
  • Singh, C., Belloni, M., & Christian, W. (2006). Improving students’ understanding of quantum mechanics. Physics Today, 59(8), 43–49.
  • Stuckey, M., Hofstein, A., Mamlok-Naaman, R., & Eilks, I. (2013). The meaning of ‘relevance’ in science education and its implications for the science curriculum. Studies in Science Education, 49(1), 1–34.
  • Trindade, J., Fiolhais, C., & Almeida, L. (2002). Science learning in virtual environments: A descriptive study. British Journal of Educational Technology, 33(4), 471–488.
  • Wuttiprom, S., Sharma, M. D., Johnston, I. D., Chitaree, R., & Soankwan, C. (2009). Development and use of a conceptual survey in introductory quantum physics. International Journal of Science Education, 31(5), 631–654.