844
Views
17
CrossRef citations to date
0
Altmetric
Articles

Development and validation of a university students’ progression in learning quantum mechanics through exploratory factor analysis and Rasch analysis

ORCID Icon, , ORCID Icon, ORCID Icon, , , ORCID Icon & show all
Pages 388-417 | Received 22 Nov 2017, Accepted 03 Dec 2018, Published online: 15 Dec 2018

References

  • Alonzo, A. C., Robinson, A., Christensen, J., & Lee, M. (2017). Developing learning progressions for momentum and mechanical energy: Insights for instruction. Paper presented at the annual conference of NARST, San Antonio, TX.
  • Amaldi, U. (2012). L’Amaldi per i licei scientifici. Bologna: Zanichelli.
  • Ayene, M., Kriek, J., & Damtie, B. (2011). Wave-particle duality and uncertainty principle: Phenomenographic categories of description of tertiary physics students’ depictions. Physical Review Special Topics Physics Education Research, 7, 020113. doi: 10.1103/PhysRevSTPER.7.020113
  • Baily, C., & Finkelstein, N. (2010). Teaching and understanding of quantum interpretations in modern physics courses. Physical Review Special Topics Physics Education Research, 6, 010101. doi: 10.1103/PhysRevSTPER.6.010101
  • Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd ed.). New York, NY: Psychology Press.
  • Boone, W. J., Staver, J. R., & Yale, M. S. (2015). Rasch analysis in the human Sciences. Dordrecht: Springer.
  • Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11, 33–63. doi: 10.1207/s15326977ea1101_2
  • Carey, S. (1985). Conceptual change in childhood. Cambridge: MIT Press.
  • Corcoran, T. B., Mosher, F. A., & Rogat, A. D. (2009). Learning progressions in science: An evidence-based approach to reform. Philadelphia, PA: Consortium for Policy Research in Education.
  • Driver, R. (1994). Making sense of secondary science: Research into children’s ideas. New York, NY: Routledge.
  • Duncan, P. W., Bode, R., Lai, S. M., & Perera, S. (2003). Rasch analysis of a new stroke-specific outcome scale: The stroke impact scale. Archives of Physical Medicine and Rehabilitation, 84(7), 950–963. doi: 10.1016/S0003-9993(03)00035-2
  • Duncan, R. G., & Hmelo-Silver, C. E. (2009). Learning Progressions: Aligning curriculum, instruction, and assessment. Journal of Research in Science Teaching, 46(6), 606–609. doi: 10.1002/tea.20316
  • Duncan, R. G., & Rivet, A. E. (2013). Science learning progressions. Science, 339, 396–397. doi: 10.1126/science.1228692
  • Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47, 123–182. doi: 10.1080/03057267.2011.604476
  • Emigh, P. J., Passante, G., & Shaffer, P. S. (2013, July 17–18). Student understanding of blackbody radiation and its application to everyday objects. Physics education research conference, Portland, OR.
  • Fischler, H., & Lichtfeldt, M. (1992). Modern physics and students’ conceptions. International Journal of Science Education, 14, 181–190. doi: 10.1080/0950069920140206
  • Foster, J., & Wiser, M. (2012). The potential of learning progression research to inform the design of state science standards. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science (pp. 435–460). Boston, MA: Sense Publishers.
  • Furtak, E. M., Morrison, D., & Kroog, H. (2014). Investigating the link between learning progressions and classroom assessment. Science Education, 98, 640–673. doi: 10.1002/sce.21122
  • Gil-Perez, D., & Solbes, J. (1993). The introduction of modern physics: Overcoming a deformed vision of science. International Journal of Science Education, 15(3), 255–260. doi: 10.1080/0950069930150303
  • Greca, I. M., & Freire, O. (2003). Does an emphasis on the concept of quantum states enhance students’ understanding of quantum mechanics? Science & Education, 12, 541–557. doi: 10.1023/A:1025385609694
  • Hadenfeldt, J. C., Neumann, K., Bernholt, S., Liu, X., & Parchmann, I. (2016). Students’ progression in understanding the matter concept. Journal of Research in Science Teaching, 53(5), 683–708. doi: 10.1002/tea.21312
  • Hadzidaki, P. (2008). The Heisenberg microscope: A powerful instructional tool for promoting meta-cognitive and meta-scientific thinking on quantum mechanics and the nature of science. Science & Education, 17, 613–639. doi: 10.1007/s11191-006-9057-3
  • Ireson, G. (2000). The quantum understanding of pre-university physics students. Physics Education, 35, 15–21. doi: 10.1088/0031-9120/35/1/302
  • Johnson, P. (2013). How students’ understanding of particle theory develops: A learning progression. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 47–67). New York, NY: Springer.
  • Johnston, I. D., Crawford, K., & Fletcher, P. R. (1998). Student difficulties in learning quantum mechanics. International Journal of Science Education, 20, 427–446. doi: 10.1080/0950069980200404
  • Jones, D. (1991). Teaching modern physics: Misconceptions of the photon that can damage understanding. Physics Education, 26(2), 93–98. doi:10.1088/0031-9120/26/2/002
  • Karakostas, V., & Hadzidaki, P. (2005). Realism vs constructivism in contemporary physics: The impact of the debate on the understanding of quantum theory and its instructional process. Science & Education, 14, 607. doi: 10.1007/s11191-004-5156-1
  • Ke, J.-L., Monk, M., & Duschl, R. (2005). Learning introductory quantum mechanics: Sensori-motor experience and mental models. International Journal of Science Education, 27(13), 1571–1594. doi: 10.1080/09500690500186485
  • Kohnle, A., Bozhinova, I., Browne, D., Everitt, M., Fomins, A., Kok, P. … Swinbank, E. (2014). A new introductory quantum mechanics curriculum. European Journal of Physics, 35(1), 015001. doi: 10.1088/0143-0807/35/1/015001
  • Kragh, H. (1992). A sense of history: History of science and the teaching of introductory quantum theory. Science & Education, 1, 349–363. doi: 10.1007/BF00430962
  • Krajcik, J. S., Sutherland, L. M., Drago, K., & Merritt, J. (2012). The promise and value of Learning Progression research. In S. Berholt, K. Neumann, & P. Nentwig (Eds.), Making it tangible: Learning outcomes in science education (pp. 261–284). Muster: Waxmann Verlag.
  • Krijtenburg-Lewerissa, K., Pol, H. J., Brinkman, A., & van Joolingen, W. R. (2017). Insights into teaching quantum mechanics in secondary and lower undergraduate education. Physical Review Special Topics Physics Education Research, 13, 010109. doi: 10.1103/PhysRevPhysEducRes.13.010109
  • Lautesse, P., Vila Valls, A., Ferlin, F., Héraud, J. L., & Chabot, H. (2015). Teaching quantum physics in upper secondary school in France. Science & Education, 24, 937. doi: 10.1007/s11191-015-9755-9
  • Levrini, O., De Ambrosis, A., Hemmer, S., Laherto, A., Malgieri, M., Pantano, O., & Tasquier, G. (2016). Understanding first-year students’ curiosity and interest about physics – lessons learned from the HOPE project. European Journal of Physics, 38(2), 025701. doi: 10.1088/1361-6404/38/2/025701
  • Levy-Leblond, J. M. (1988). Neither waves, nor particles, but quantons. Nature, 334(6177), 19–20. https://www.nature.com/articles/334019c0.pdf doi: 10.1038/334019c0
  • Linacre, J. M. (2012). A user’s guide to winsteps. Retrieved from http://www.winsteps.com/manuals.htm
  • Mannila, K., Koponen, I. T., & Niskanen, J. A. (2002). Building a picture of students’ conceptions of wave- and particle-like properties of quantum entities. European Journal of Physics, 23, 45. doi: 10.1088/0143-0807/23/1/307
  • Marshman, E., & Singh, C. (2015). Framework for understanding the patterns of student difficulties in quantum mechanics. Physics Review Letter Special Topics – Physics Education Research, 11, 020119. doi: 10.1103/PhysRevSTPER.11.020119
  • Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174. doi: 10.1007/BF02296272
  • McKagan, S., Handley, W., Perkins, K., & Wieman, C. (2009). A research-based curriculum for teaching the photoelectric effect. American Journal of Physics, 77, 87–95. doi: 10.1119/1.2978181
  • McKagan, S. B., Perkins, K. K., Dubson, M., Malley, C., Reid, S., LeMaster, R., & Wieman, C. E. (2008). Developing and researching PhET simulations for teaching quantum mechanics. American Journal of Physics, 76, 406–417. doi: 10.1119/1.2885199
  • McKagan, S., Perkins, K., & Wieman, C. (2008). Why we should teach the Bohr model and how to teach it effectively. Physics Review Letter Special Topics – Physics Education Research, 4, 010103. doi: 10.1103/PhysRevSTPER.4.010103
  • Michelini, M., Ragazzon, R., Santi, L., & Stefanel, A. (2004). Discussion of a didactic proposal on quantum mechanics with secondary school students. Il Nuovo Cimento Della Societa Italiana Di Fisica. C, 27, 555. doi: 10.1393/ncc/i2005-10027-3
  • Morell, L., Collier, T., Black, P., & Wilson, M. (2017). A construct modelling approach to develop a learning progression of how students understand the structure of matter. Journal of Research in Science Teaching, 54(8), 1024–1048. doi: 10.1002/tea.21397
  • Mulder, P. (2011). Are orbitals observable? Hyle, 17, 24–35. http://www.hyle.org/journal/issues/17-1/mulder.pdf
  • Muller, R., & Wiesner, H. (2002). Teaching quantum mechanics on an introductory level. American Journal of Physics, 70, 200–209. doi: 10.1119/1.1435346
  • Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a Learning Progression of Energy. Journal of Research in Science Teaching, 50, 162–188. doi:10.1002/tea.21061
  • Olsen, R. V. (2002). Introducing quantum mechanics in the upper secondary school: A study in Norway. International Journal of Science Education, 24(6), 565–574. doi: 10.1080/09500690110073982
  • Oon, P.-T., & Fan, X. (2017). Rasch analysis for the psychometric improvement of science attitudes rating scales. International Journal of Science Education, 39(6), 683–700. doi: 10.1080/09500693.2017.1299951
  • Oon, P.-T., & Subramaniam, R. (2013). Factors influencing Singapore students’ choice of physics as a tertiary field of study: A Rasch analysis. International Journal of Science Education, 35(1), 86–118. doi: 10.1080/09500693.2012.718098
  • Pade, J. (2014). Quantum mechanics for pedestrians 1: Fundamentals. New York, NY: Springer.
  • Petri, J., & Niedderer, H. (1998). A learning pathway in high school level quantum atomic physics. International Journal of Science Education, 20(9), 1075–1088. doi: 10.1080/0950069980200905
  • Plummer, J. D. (2012). Challenges in defining and validating an Astronomy learning progression. In A. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 77–100). Rotterdam: Sense Publishers.
  • Plummer, J. D., & Maynard, L. (2014). Building a learning progression for celestial motion: An exploration of students’ reasoning about the seasons. Journal of Research in Science Teaching, 51(7), 902–929. doi: 10.1002/tea.21151
  • Plummer, J. D., Palma, C., Flarend, A., Rubin, K. A., Ong, Y. S., Botzer, B. … Furman, T. (2015). Development of a learning progression for the formation of the solar system. International Journal of Science Education, 37(9), 1381. doi: 10.1080/09500693.2015.1036386
  • Rivet, A., & Kastens, K. (2012). Developing a construct-based assessment to examine students’ analogical reasoning around physical models in earth science. Journal of Research in Science Teaching, 49(6), 713–743. doi: 10.1002/tea.21029
  • Sadaghiani, R., & Pollock, S. J. (2015). Quantum mechanics concept assessment: Development and validation study. Physics Review Letter Special Topics  Physics Education Research, 11, 010110. doi:10.1103/PhysRevSTPER.11.010110
  • Sayer, R., Maries, A., & Singh, C. (2017). Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics. Physical Review Special Topics Physics Education Research, 13, 010123. doi: 10.1103/PhysRevPhysEducRes.13.010123
  • Sevian, H., & Stains, M. (2013). Implicit assumptions and progress variables in a learning progression about structure and motion of matter. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 69–94). New York, NY: Springer.
  • Shavelson, R. J., & Kurpius, A. (2012). Reflections on learning progressions. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science (pp. 13–26). Boston, MA: Sense Publishers.
  • Shepard, L. A. (2017). Learning progressions as tools for assessment and learning. Applied Measurement in Education. doi: 10.1080/08957347.2017.1408628
  • Siddiqui, S., & Singh, C. (2017). How diverse are physics instructors’ attitudes and approaches to teaching undergraduate level quantum mechanics? European Journal of Physics, 38, 035703. doi: 10.1088/1361-6404/aa6131
  • Singh, C. (2001). Student understanding of quantum mechanics. American Journal of Physics, 69, 885–895. doi: 10.1119/1.1365404
  • Singh, C. (2008). Student understanding of quantum mechanics at the beginning of graduate instruction. American Journal of Physics, 76, 277–292. doi:10.1119/1.2825387
  • Singh, C., & Marshman, E. (2015). Review of student difficulties in upper-level quantum. Physical Review Letter Special Topics – Physics Education Research, 11, 020117. doi:10.1103/PhysRevSTPER.11.020117
  • Smith, C. L., Wiser, M., Anderson, C. W., & Krajcik, J. (2006). Implications of research on children’s learning for standards and assessment: A proposed learning progression for matter and the atomic molecular theory. Focus Article. Measurement: Interdisciplinary Research and Perspectives, 14, 1–98. doi: 10.1080/15366367.2006.9678570
  • Stefani, C., & Tsaparlis, G. (2009). Students’ levels of explanations, models, and misconceptions in basic quantum chemistry: A phenomenographic study. Journal of Research in Science Teaching, 46, 520–536. doi: 10.1002/tea.20279
  • Stevens, S. Y., Delgado, C., & Krajcik, J. S. (2010). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47, 687–715. doi: 10.1002/tea.20324
  • Styer, D. F. (1996). Common misconceptions regarding quantum mechanics. American Journal of Physics, 64, 31–34. doi: 10.1119/1.18288
  • Tsaparlis, G., & Papaphotis, G. (2002). Quantum-chemical concepts: Are they suitable for secondary students? Chemistry Education: Research and Practice in Europe, 3(2), 129–144. doi: 10.1039/B2RP90011D
  • Tsaparlis, G., & Papaphotis, G. (2009). High-school students’ conceptual difficulties and attempts at conceptual change: The case of basic quantum chemical concepts. International Journal of Science Education, 31, 895. doi: 10.1080/09500690801891908
  • Vosniadou, S. (2002). On the nature of naïve physics. In L. Margarita, & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 61–76). New York, NY: Springer.
  • Wallace, C. S., & Baile, J. M. (2010). Do concept inventories actually measure anything? Astronomy Education Review, 9, 010116-1. doi: 10.3847/AER2010024
  • Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah: Lawrence Erlbaum Associates.
  • Wilson, M. R., & Bertenthal, M. W. (2006). Systems for state science assessment. Washington, DC: National Academies Press.
  • Wittmann, M., Morgan, J., & Bao, L. (2005). Addressing student models of energy loss in quantum tunneling. European Journal of Physics, 26, 939. doi: 10.1088/0143-0807/26/6/001
  • Wuttiprom, S., Sharma, M. D., Johnston, I. D., Chitaree, R., & Soankwan, C. (2009). Development and use of a conceptual survey in introductory quantum physics. International Journal of Science Education, 31(5), 631–654. doi:10.1080/09500690701747226
  • Zhu, G., & Singh, C. (2011). Improving students’ understanding of quantum mechanics via Stern-Gerlach experiment. American Journal of Physics, 79(5), 499–507. doi: 10.1119/1.3546093
  • Zhu, G., & Singh, C. (2012a). Improving students’ understanding of quantum measurement I: Investigation of difficulties. Physical Review Special Topics Physics Education Research, 8, 010117. doi: 10.1103/PhysRevSTPER.8.010117
  • Zhu, G., & Singh, C. (2012b). Improving students’ understanding of quantum measurement II: Development of research based learning tools. Physical Review Special Topics Physics Education Research, 8, 010118. doi:10.1103/PhysRevSTPER.8.010118
  • Zhu, G., & Singh, C. (2012c). Surveying students’ understanding of quantum mechanics in one spatial dimension. American Journal of Physics, 80(3), 252–259. doi: 10.1119/1.3677653
  • Zhu, G., & Singh, C. (2013). Improving students’ understanding of the addition of angular momentum in quantum mechanics. Physical Review Special Topics Physics Education Research, 9, 010101. doi: 10.1103/PhysRevSTPER.9.010101
  • Zollman, D. A., Rebello, N. S., & Hogg, K. (2002). Quantum physics for everyone: Hands-on activities integrated with technology. American Journal of Physics, 70(3), 252–259. doi: 10.1119/1.1435347

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.