1,005
Views
10
CrossRef citations to date
0
Altmetric
Articles

How Chinese students’ scientific competencies are influenced by their attitudes?

ORCID Icon
Pages 2094-2112 | Received 10 Nov 2018, Accepted 24 Aug 2019, Published online: 02 Sep 2019

References

  • Akerson, V. L., Buzzelli, C. A., & Eastwood, J. L. (2012). Bridging the gap between preservice early childhood teachers’ cultural values, perceptions of values held by scientists, and the relationships of these values to conceptions of nature of science. Journal of Science Teacher Education, 23(2), 133–157. doi: 10.1007/s10972-011-9244-1
  • Alsop, S., & Watts, M. (2003). Science education and affect. International Journal of Science Education, 25(9), 1043–1047. doi: 10.1080/0950069032000052180
  • Ashraf, S. S., Fatema, M. A. R., & Abdullah, H. (2012). A hands-on approach to teaching environmental awareness and pollutant remediation to undergraduate chemistry students. Research in Science & Technological Education, 30(2), 173–184. doi: 10.1080/02635143.2012.698604
  • Beghetto, R. A. (2007). Factors associated with middle and secondary students’ perceived science competence. Journal of Research in Science Teaching, 44(6), 800–814. doi: 10.1002/tea.20166
  • Blanco-López, Á., España-RAMOS, E., González-García, F. J., & Franco-Mariscal, A. J. (2015). Key aspects of scientific competence for citizenship: A Delphi study of the expert community in Spain. Journal of Research in Science Teaching, 52(2), 164–198. doi: 10.1002/tea.21188
  • Chang, C., & Cheng, W. (2008). Science achievement and students’ self-confidence and interest in science: A Taiwanese representative sample study. International Journal of Science Education, 30(9), 1183–1200. doi: 10.1080/09500690701435384
  • Chi, S., Wang, Z., Liu, X., & Zhu, L. (2017). Associations among attitudes, perceived difficulty of learning science, gender, parents’ occupation and students’ scientific competencies. International Journal of Science Education, 39(5), 1–18.
  • Dewey, J. (1913). Interest and effort in education. Cambridge: The Riverside Press.
  • Falk, J. H., Storksdieck, M., & Dierking, L. D. (2007). Investigating public science interest and understanding: Evidence for the importance of free-choice learning. Public Understanding of Science, 16(4), 455–469. doi: 10.1177/0963662506064240
  • Fisher, P. H., Dobbsoates, J., Doctoroff, G. L., & Arnold, D. H. (2012). Early math interest and the development of math skills. Journal of Educational Psychology, 104(3), 673–681. doi: 10.1037/a0027756
  • Gungor, A., Eryılmaz, A., & Fakıoglu, T. (2007). The relationship of freshmen’s physics achievement and their related affective characteristics. Journal of Research in Science Teaching, 44(8), 1036–1056. doi: 10.1002/tea.20200
  • Hong, J., Hwang, M., Liu, M., Ho, H., & Chen, Y. (2014). Using a “prediction-observation-explanation” inquiry model to enhance student interest and intention to continue science learning predicted by their internet cognitive failure. Computers & Education, 72, 110–120. doi: 10.1016/j.compedu.2013.10.004
  • Hummel, E., & Randler, C. (2012). Living animals in the classroom: A meta-analysis on learning outcome and a treatment-control study focusing on knowledge and motivation. Journal of Science Education & Technology, 21(1), 95–105. doi: 10.1007/s10956-011-9285-4
  • IBM. (2013a). IBM SPSS Amos 22 [computer software]. New York, NY: Author.
  • IBM. (2013b). IBM SPSS Statistics 22 [computer software]. New York, NY: Author.
  • Jack, B. M., Lin, H., & Yore, L. D. (2014). The synergistic effect of affective factors on student learning outcomes. Journal of Research in Science Teaching, 51(8), 1084–1101. doi: 10.1002/tea.21153
  • Jones, M. G., Corin, E. N., Andre, T., Childers, G. M., & Stevens, V. (2016). Factors contributing to lifelong science learning: Amateur astronomers and birders. Journal of Research in Science Teaching, 54(3), 412–433. doi: 10.1002/tea.21371
  • Karahan, E., & Roehrig, G. (2017). Secondary school students’ understanding of science and their socioscientific reasoning. Research in Science Education, 47(4), 755–782. doi: 10.1007/s11165-016-9527-9
  • Karpudewan, M., & Roth, W. M. (2018). Changes in primary students’ informal reasoning during an environment-related curriculum on socio-scientific issues. International Journal of Science & Mathematics Education, 16(3), 1–19. doi: 10.1007/s10763-016-9787-x
  • Kazdin, A. E. (2000). Encyclopaedia of Psychology. Oxford: Oxford University Press.
  • Khishfe, R., Alshaya, F. S., BouJaoude, S., Mansour, N., & Alrudiyan, K. I. (2017). Students’ understandings of nature of science and their arguments in the context of four socio-scientific issues. International Journal of Science Education, 39(3), 299–334. doi: 10.1080/09500693.2017.1280741
  • Kiemer, K., Gröschner, A., Pehmer, A. K., & Seidel, T. (2015). Effects of a classroom discourse intervention on teachers’ practice and students’ motivation to learn mathematics and science. Learning & Instruction, 35(35), 94–103. doi: 10.1016/j.learninstruc.2014.10.003
  • Kline, R. B. (2016). Principles and practice of structural equation modeling (fourth edition). New York, NY: The Guilford Press.
  • Klopfer, L. E. (1976). A structure for the affective domain in relation to science education. Science Education, 60(3), 299–312. doi: 10.1002/sce.3730600304
  • Koballa, T. R., & Glynn, S. M. (2007). Attitudinal and motivational constructs in science learning. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 75–102). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Köller, O., Baumert, J., & Kai, S. (2001). Does interest matter? The relationship between academic interest and achievement in mathematics. Journal for Research in Mathematics Education, 32(5), 448–470. doi: 10.2307/749801
  • Krapp, A., & Prenzel, M. (2011). Research on interest in science: Theories, methods, and findings. International Journal of Science Education, 33(1), 27–50. doi: 10.1080/09500693.2010.518645
  • Laforgia, J. (1988). The affective domain related to science education and its evaluation. Science Education, 72(4), 407–421. doi: 10.1002/sce.3730720402
  • Lin, H., Chiu, H., & Chou, C. (2004). Student understanding of the nature of science and their problem-solving strategies. International Journal of Science Education, 26(1), 101–112. doi: 10.1080/0950069032000070289
  • Lin, H., Lawrenz, F., Lin, S., & Hong, Z. (2013). Relationships among affective factors and preferred engagement in science-related activities. Public Understanding of Science, 22(8), 941–954. doi: 10.1177/0963662511429412
  • Linnenbrink-Garcia, L., Patall, E. A., & Messersmith, E. E. (2013). Antecedents and consequences of situational interest. British Journal of Educational Psychology, 83(4), 591–614. doi: 10.1111/j.2044-8279.2012.02080.x
  • Liu, S., & Lederman, N. G. (2007). Exploring prospective teachers’ worldviews and conceptions of nature of science. International Journal of Science Education, 29(10), 1281–1307. doi: 10.1080/09500690601140019
  • Lupión-Cobos, T., López-Castilla, R., & Blanco-López, Á. (2017). What do science teachers think about developing scientific competences through context-based teaching? A case study. International Journal of Science Education, 39(7), 937–963. doi: 10.1080/09500693.2017.1310412
  • Nicolaou, C. T., Korfiatis, K., Evagorou, M., & Constantinou, C. (2009). Development of decision-making skills and environmental concern through computer-based, scaffolded learning activities. Environmental Education Research, 15(1), 39–54. doi: 10.1080/13504620802567007
  • Nuutila, K., Tuominen, H., Tapola, A., Vainikainen, M. P., & Niemivirta, M. (2018). Consistency, longitudinal stability, and predictions of elementary school students’ task interest, success expectancy, and performance in mathematics. Learning & Instruction, 56, 73–83. doi: 10.1016/j.learninstruc.2018.04.003
  • OECD. (1999). Measuring student knowledge and skills: A new framework for assessment. Paris: Author.
  • OECD. (2003a). Definition and selection of key competencies: Executive summary. Göttingen: Hogrefe.
  • OECD. (2003b). The PISA 2003 assessment framework – mathematics, reading, science and problem solving knowledge and skills. Paris: Author.
  • OECD. (2006). Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. Paris: Author.
  • OECD. (2007). PISA 2006: Science competencies for tomorrow’s world – volume 1: analysis. Paris: Author.
  • OECD. (2010). PISA 2009 results: What students know and can do – student performance in reading, mathematics and science (Volume I). Paris: Author.
  • OECD. (2014). PISA 2012 results: What students know and can do – student performance in mathematics, reading and science (Volume I). Paris: Author.
  • OECD. (2016a). PISA 2015 assessment and analytical framework: Science, reading, mathematics and financial literacy. Paris: OECD Publishing.
  • OECD. (2016b). PISA 2015 results (Volume I): Excellence and equity in education. Paris: Author.
  • OECD. (2017). PISA 2015 technical report. Paris: Author.
  • Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079. doi: 10.1080/0950069032000032199
  • Ostermeier, C., Prenzel, M., & Duit, R. (2010). Improving science and mathematics instruction: The SINUS project as an example for reform as teacher professional development. International Journal of Science Education, 32(3), 303–327. doi: 10.1080/09500690802535942
  • Ottander, C., & Ekborg, M. (2012). Students’ experience of working with socioscientific issues – a quantitative study in secondary school. Research in Science Education, 42(6), 1147–1163. doi: 10.1007/s11165-011-9238-1
  • Popper, K. R. (1960). The Poverty of Historicism. London: Routledge & Kegan Paul.
  • Psycharis, S. (2013). Examining the effect of the computational models on learning performance, scientific reasoning, epistemic beliefs and argumentation: An implication for the STEM agenda. Computers & Education, 68, 253–265. doi: 10.1016/j.compedu.2013.05.015
  • Rahayu, S., Chandrasegaran, A. L., Treagust, D. F., Kita, M., & Ibnu, S. (2011). Understanding acid-base concepts: Evaluating the efficacy of a senior high school student-centred instructional program in Indonesia. International Journal of Science & Mathematics Education, 9(6), 1439–1458. doi: 10.1007/s10763-010-9272-x
  • Renninger, K. A., & Hidi, S. (2011). Revisiting the conceptualization, measurement, and generation of interest. Educational Psychologist, 46(3), 168–184. doi: 10.1080/00461520.2011.587723
  • Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Rotgans, J. I., & Schmidt, H. G. (2011). Situational interest and academic achievement in the active-learning classroom. Learning & Instruction, 21(1), 58–67. doi: 10.1016/j.learninstruc.2009.11.001
  • Sadler, T. D. (2011). Socio-scientific issues in the classroom: Teaching, learning and research. Heidelberg: Springer.
  • Schalk, K. A. (2012). A socioscientific curriculum facilitating the development of distal and proximal NOS conceptualizations. International Journal of Science Education, 34(1), 1–24. doi: 10.1080/09500693.2010.546895
  • Schumacker, R. E., Lomax, R. G. (2016). A beginner’s guide to structural equation modeling (4th edition). New York, NY: Routledge.
  • Singh, K., Granville, M., & Dika, S. (2002). Mathematics and science achievement: Effects of motivation, interest, and academic engagement. The Journal of Educational Research, 95(6), 323–332. doi: 10.1080/00220670209596607
  • Tsai, C. (2015). Improving students’ PISA scientific competencies through online argumentation. International Journal of Science Education, 37(2), 321–339. doi: 10.1080/09500693.2014.987712
  • Tsai, C. (2018). The effect of online argumentation of socio-scientific issues on students’ scientific competencies and sustainability attitudes. Computers & Education, 116, 14–27. doi: 10.1016/j.compedu.2017.08.009
  • Tsai, C., Li, Y., & Cheng, Y. (2016). The relationships among adult affective factors, engagement in science, and scientific competencies. Adult Education Quarterly, 67(1), 30–47. doi: 10.1177/0741713616673148
  • Uitto, A., Juuti, K., Lavonen, J., Byman, R., & Meisalo, V. (2011). Secondary school students’ interests, attitudes and values concerning school science related to environmental issues in Finland. Environmental Education Research, 17(2), 167–186. doi: 10.1080/13504622.2010.522703
  • van Griethuijsen, R. A. L. F., van Eijck, M. W., Haste, H., den Brok, P. J., Skinner, N. C., Mansour, N., … BouJaoude, S. (2015). Global patterns in students’ views of science and interest in science. Research in Science Education, 45(4), 581–603. doi: 10.1007/s11165-014-9438-6
  • Weeks, A., Bachman, B., Josway, S., Laemmerzahl, A. F., & North, B. (2014). Guiding student inquiry into eukaryotic organismal biology using the plasmodial slime mold physarum polycephalum. American Biology Teacher, 76(3), 196–200. doi: 10.1525/abt.2014.76.3.8
  • Whitehead, A. N. (1929). The aims of education and other essays. New York, NY: The Free Press.
  • Wigfield, A., & Cambria, J. (2010). Students’ achievement values, goal orientations, and interest: Definitions, development, and relations to achievement outcomes. Developmental Review, 30(1), 1–35. doi: 10.1016/j.dr.2009.12.001
  • Wu, Y., & Tsai, C. (2011). High school students’ informal reasoning regarding a socio-scientific issue, with relation to scientific epistemological beliefs and cognitive structures. International Journal of Science Education, 33(3), 371–400. doi: 10.1080/09500690903505661
  • Yang, F., Liu, S., Hsu, C., Chiou, G., Wu, H., Wu, Y., … Tsai, C. (2018). High-school students’ epistemic knowledge of science and its relation to learner factors in science learning. Research in Science Education, 48(2), 325–344. doi: 10.1007/s11165-016-9570-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.