1,155
Views
9
CrossRef citations to date
0
Altmetric
Articles

Sequential patterns of students’ drawing in constructing scientific explanations: focusing on the interplay among three levels of pictorial representation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 677-702 | Received 29 Apr 2019, Accepted 28 Jan 2020, Published online: 11 Feb 2020

References

  • Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096–1097. doi: 10.1126/science.1204153
  • Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26–55. doi: 10.1002/sce.20286
  • Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education, 95(4), 639–669. doi: 10.1002/sce.20449
  • Bucat, B., & Mocerino, M. (2009). Learning at the sub-micro level: Structural representations. In J. K. Gilbert, & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 11–29). London: Springer.
  • Ehrlén, K. (2009). Drawings as representations of children's conceptions. International Journal of Science Education, 31(1), 41–57. doi: 10.1080/09500690701630455
  • Forbes, C., Lange, K., Möller, K., Biggers, M., Laux, M., & Zangori, L. (2014). Explanation-construction in fourth-grade classrooms in Germany and the USA: A cross- national comparative video study. International Journal of Science Education, 36(14), 2367–2390. doi: 10.1080/09500693.2014.923950
  • Gilbert, J. K., Boulter, C. J., & Rutherford, M. (2000). Explanations with models in science education. In J. K. Gilbert (Ed.), Developing models in science education (pp. 193–208). Dordrecht: Springer.
  • Gilbert, J. K., & Treagust, D. F. (2009). Introduction: Macro, submicro and symbolic representations and the relationship between them: Key models in chemical education. In J. K. Gilbert, & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 1–8). Dordrecht, Netherlands: Springer.
  • Gooding, D. C. (2006). From phenomenology to field theory: Faraday's visual reasoning. Perspectives on Science, 14(1), 40–65. doi: 10.1162/posc.2006.14.1.40
  • Hsieh, W. M., & Tsai, C. C. (2017). Exploring students’ conceptions of science learning via drawing: A cross-sectional analysis. International Journal of Science Education, 39(3), 274–298. doi: 10.1080/09500693.2017.1280640
  • Johnstone, A. H. (1982). Macro- and micro-chemistry. School Science Review, 64, 377–379.
  • Kress, G., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (2001). Multimodal teaching and learning: The rhetorics of the science classroom. London: Continuum.
  • Larkin, J., & Simon, H. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65–100. doi: 10.1111/j.1551-6708.1987.tb00863.x
  • Marais, P., & Jordaan, F. (2000). Are we taking symbolic language for granted? Journal of Chemical Education, 77(10), 1355–1357. doi: 10.1021/ed077p1355
  • Maries, A., & Singh, C. (2018). Do students benefit from drawing productive diagrams themselves while solving introductory physics problems? The case of two electrostatics problems. European Journal of Physics, 39(1), 015703. doi: 10.1088/1361-6404/aa9038
  • Merriam, S. B. (1998). Qualitative research and case study applications in education. Revised and expanded from “Case study research in education”. San Francisco, CA: Jossey-Bass Publishers.
  • Newberry, M., & Gilbert, J. K. (2007). Bringing learners and scientific expertise together. In K. S. Taber (Ed.), Science education for gifted learners (pp. 197–211). London: Routledge.
  • Prain, V., Tytler, R., & Peterson, S. (2009). Multiple representation in learning about evaporation. International Journal of Science Education, 31(6), 787–808. doi: 10.1080/09500690701824249
  • Preston, C. (2016). Effect of a science diagram on primary students’ understanding about magnets. Research in Science Education, 46(6), 857–877. doi: 10.1007/s11165-015-9484-8
  • Quillin, K., & Thomas, S. (2015). Drawing-to-learn: A framework for using drawings to promote model-based reasoning in biology. CBE—Life Sciences Education, 14(1), 1–16. doi: 10.1187/cbe.14-08-0128
  • Redish, E. F., & Kuo, E. (2015). Language of physics, language of math: Disciplinary culture and dynamic epistemology. Science & Education, 24(5-6), 561–590. doi: 10.1007/s11191-015-9749-7
  • Steffe, L. P. (1991). The constructivist teaching experiment: Illustrations and implications. In E. Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 177–194). Dordrecht: Springer.
  • Talanquer, V. (2011). Macro, submicro, and symbolic: The many faces of the chemistry “triplet”. International Journal of Science Education, 33(2), 179–195. doi: 10.1080/09500690903386435
  • Tang, K.-S. (2016). Constructing scientific explanations through premise–reasoning–outcome (PRO): an exploratory study to scaffold students in structuring written explanations. International Journal of Science Education, 38(9), 1415–1440. doi: 10.1080/09500693.2016.1192309
  • Tang, K. S., Delgado, C., & Moje, E. B. (2014). An integrative framework for the analysis of multiple and multimodal representations for meaning-making in science education. Science Education, 98(2), 305–326. doi: 10.1002/sce.21099
  • Tippett, C. D. (2016). What recent research on diagrams suggests about learning with rather than learning from visual representations in science. International Journal of Science Education, 38(5), 725–746. doi: 10.1080/09500693.2016.1158435
  • Treagust, D. F., Duit, R., & Fischer, H. E. (2017). Multiple representations in physics education. Cham: Springer.
  • Tytler, R., & Prain, V. (2010). A framework for re-thinking learning in science from recent cognitive science perspectives. International Journal of Science Education, 32(15), 2055–2078. doi: 10.1080/09500690903334849
  • Uhden, O., Karam, R., Pietrocola, M., & Pospiech, G. (2012). Modelling mathematical reasoning in physics education. Science & Education, 21(4), 485–506. doi: 10.1007/s11191-011-9396-6
  • Van Dijk, T. A. (1981). Episodes as units of discourse analysis. In D. Tannen (Ed.), Analyzing discourse: Text and talk (pp. 177–195). Georgetown: Georgetown University Press.
  • Van Meter, P. N., & Garner, J. (2005). The promise and practice of learner-generated drawing: Literature review and synthesis. Educational Psychology Review, 17(4), 285–325. doi: 10.1007/s10648-005-8136-3
  • Yeo, J., & Gilbert, J. K. (2014). Constructing a scientific explanation: A narrative account. International Journal of Science Education, 36(11), 1902–1935. doi: 10.1080/09500693.2014.880527
  • Yeo, J., & Gilbert, J. K. (2017). The role of representations in students’ explanations of four phenomena in physics: Dynamics, thermal physics, electromagnetic induction and superposition. In D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple representations in physics education (pp. 255–287). Cham, Switzerland: Springer.
  • Zhang, J. (1997). The nature of external representations in problem solving. Cognitive Science, 21(2), 179–217. doi: 10.1207/s15516709cog2102_3
  • Zhang, J., & Norman, D. A. (1994). Representations in distributed cognitive tasks. Cognitive Science, 18(1), 87–122. doi: 10.1207/s15516709cog1801_3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.