1,188
Views
17
CrossRef citations to date
0
Altmetric
Articles

A sustained multidimensional conceptual change intervention in grade 9 and 10 science classes

ORCID Icon, ORCID Icon & ORCID Icon
Pages 703-721 | Received 27 Jun 2019, Accepted 30 Jan 2020, Published online: 09 Feb 2020

References

  • ACARA. (2013). Australian curriculum. Retrieved from http://www.australiancurriculum.edu.au/
  • Anderson, D. L., Fisher, K. M., & Norman, G. J. (2002). Development and evaluation of the conceptual inventory of natural selection. Journal of Research in Science Teaching, 39(10), 952–978. doi: 10.1002/tea.10053
  • Bandura, A., Barbaranelli, C., Caprara, G. V., & Pastorelli, C. (1996). Multifaceted impact of self-efficacy beliefs on academic functioning. Child Development, 67, 1206–1222. doi: 10.2307/1131888
  • Broughton, S. H., Sinatra, G. M., & Nussbaum, E. M. (2013). Pluto has been a planet my whole life!: emotions, attitudes and conceptual change in elementary students’ learning about Pluto's reclassification. Research in Science Education, 43(2), 529–550. doi: 10.1007/s11165-011-9274-x
  • Bryman, A. (2012). Social research methods (4th ed.). Oxford: Oxford University Press.
  • Caballero, M. D., Greco, E. F., Murray, E. R., Bujak, K. R., Marr, M. J., Catrambone, R., … Schatz, M. F. (2012). Comparing large lecture mechanics curricula using the Force Concept Inventory: A five thousand student study. American Journal of Physics, 80(7), 638–644. doi: 10.1119/1.3703517
  • Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. N. Giere (Ed.), Minnesota studies in the philosophy of science: Cognitive models of science (Vol. XV, pp. 129–186). Minneapolis: University of Minnesota Press.
  • Chi, M. T. H. (2013). Two kinds and four sub-types of misconceived knowledge, ways to change it, and the learning outcomes. In S. Vosniadou (Ed.), International handbook of research in conceptual change (pp. 62–83). New York: Taylor and Francis.
  • Chi, M. T. H., Roscoe, R. D., Slotta, J. D., Roy, M., & Chase, C. C. (2012). Misconceived causal explanations for emergent processes. Cognitive Science, 36, 1–61. doi: 10.1111/j.1551-6709.2011.01207.x
  • Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4(1), 27–43. doi: 10.1016/0959-4752(94)90017-5
  • Cohen, J. (1969). Statistical power analysis for the behavioral sciences (2nd ed.). New York: Academic Press.
  • Creswell, J. W. (2014). Research design: Qualitative, quantitative and mixed methods approaches. Los Angeles: Sage.
  • Dole, J. A., & Sinatra, G. M. (1998). Reconceptualizing change in the cognitive construction of knowledge. Educational Psychologist, 33(2–3), 109–128. doi: 10.1080/00461520.1998.9653294
  • Duit, R., & Treagust, D. F. (1998). Learning in science: From behaviourism towards social constructivism and beyond. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education, Part 1 (pp. 3–25). Dordrecht: Kluwer Academic Publishers.
  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688. doi: 10.1080/09500690305016
  • Duit, R., & Treagust, D. F. (2012a). Conceptual change: Still a powerful framework for improving the practice of science instruction. In K. S. Tan & M. Kim (Eds.), Issues and Challenges in science education research (pp. 43–54). Dordrecht: Springer.
  • Duit, R., & Treagust, D. F. (2012b). How can conceptual change contribute to theory and practice in science education? In B. J. Fraser, K. G. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 107–118). Dordrecht: Springer.
  • Elliott, E. S., & Dweck, C. S. (1988). Goals: An approach to motivation and achievement. Journal of Personality and Social Psychology, 54, 5–12. doi: 10.1037/0022-3514.54.1.5
  • Fensham, P. J. (2001). Science content as problematic – issues for research. In H. Behrendt, H. Dahncke, R. Duit, W. Graber, M. Komerek, A. Kross, & P. Reiska (Eds.), Research in science education – past, present and future (pp. 27–41). Dordrecht: Kluwer Academic Publishers.
  • Guzzetti, B. J., Snyder, T. E., Glass, G. V., & Gamas, W. S. (1993). Promoting conceptual change in science: A comparative meta-analysis of instructional interventions from reading education and science education. Reading Research Quarterly, 28(2), 116. doi: 10.2307/747886
  • Hatano, G., & Inagaki, K. (2003). When is conceptual change intended? A cognitive-sociocultural view. In G. M. Sinatra & P. Pintrich (Eds.), Intentional conceptual change (pp. 407–427). Mahway, NJ: Lawrence Erlbaum Associates.
  • Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112. doi: 10.3102/003465430298487
  • Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30, 141–158. doi: 10.1119/1.2343497
  • Limon Luque, M. (2003). The role of domain-specific knowledge in intentional conceptual change. In G. M. Sinatra & P. Pintrich (Eds.), Intentional conceptual change (pp. 133–170). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Linnenbrink, E. A., & Pintrich, P. (2003). Achievement goals and intentional conceptual change. In G. M. Sinatra & P. Pintrich (Eds.), Intentional conceptual change (pp. 347–374). Mahway, NJ: Lawrence Erlbaum.
  • Liu, C.-J., Hou, I. L., Chiu, H.-L., & Treagust, D. F. (2014). An exploration of secondary students’ mental states when learning about acids and bases. Research in Science Education, 44(1), 133–154. doi: 10.1007/s11165-013-9373-y
  • McLure, F. (2018). A critical evaluation of the thinking frames approach as a teaching strategy for multidimensional conceptual change in the science classroom. (Unpublished doctoral dissertation). Curtin university.
  • McLure, F., Won, W., & Treagust, D. F. (2019). Teaching thermal physics to Year 9 students: the thinking frames approach. Physics Education, 53. doi:10.1088/1361-6552/ab6c3c.
  • McLure, F., Won, W., & Treagust, D. F. (2020). Students’ understanding of the emergent processes of natural selection: The need for ontological conceptual change. Under review.
  • Mercer, N. (2008). Changing our minds: A commentary on ‘conceptual change: A discussion of theoretical, methodological and practical challenges for science education’. Cultural Studies of Science Education, 3, 351–362. doi: 10.1007/s11422-008-9099-8
  • Millar, R. (2002). Evidence based practice in science education. Retrieved from http://www.york.ac.uk/education/research/cirse/older/epse/resources/
  • Newberry, M., & Gilbert, J. K. (2007). Bringing learners and scientific expertise together. In K. S. Taber (Ed.), Science education for gifted learners (pp. 197–211). London: Routledge.
  • Newberry, M., Gilbert, J. K., & Consortium, C. H. S. (2011). The thinking frames approach. Retrieved from https://pstt.org.uk/resources/cpd-units/the-thinking-frames-approach
  • Newberry, M., Gilbert, J. K., & Hardcastle, D. (2005). Visualising progression through the science curriculum in order to raise standards. School Science Review, 86(316), 87–96.
  • Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37, 91–105. doi: 10.1207/S15326985EP3702_4
  • Pintrich, P. (2000). The role of goal orientation in self-regulation learning. In M. Boekaerts, P. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation: Theory, research and applications (pp. 451–502). San Diego, CA: Academic Press.
  • Pintrich, P., Marx, R., & Boyle, R. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63, 169–199. doi: 10.3102/00346543063002167
  • Pintrich, P., & Schrauben, B. (1992). Students’ motivational beliefs and their cognitive enegagement in classroom academic tasks. In D. H. Schunk & J. Meese (Eds.), Student perceptions in the classroom (pp. 149–183). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Towards a theory of conceptual change. Science Education, 66, 211–227. doi: 10.1002/sce.3730660207
  • Ranellucci, J., Muis, K. R., Duffy, M., Wang, X., Sampasivam, L., & Franco, G. M. (2013). To master or perform? Exploring relations between achievement goals and conceptual change learning. British Journal of Educational Psychology, 83(3), 431–451. doi: 10.1111/j.2044-8279.2012.02072.x
  • Savander-Ranne, C., & Kolari, S. (2003). Promoting the conceptual understanding of engineering students through visualization. Global Journal of Engineering Education, 7(2), 189–199.
  • Savinainen, A., & Scott, P. (2002). Using the Force Concept Inventory to monitor student learning and to plan teaching. Physics Education, 37(1), 53–58. doi: 10.1088/0031-9120/37/1/307
  • Schraw, G., Cripen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36(1), 111–139. doi: 10.1007/s11165-005-3917-8
  • Sinatra, G. M., & Mason, L. (2008). Beyond knowledge: Learner characteristics influencing conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 560–582). New York: Taylor and Francis.
  • Sinatra, G. M., & Mason, L. (2013). Beyond knowledge: Learner characteristics influencing conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 377–394). New York: Taylor and Francis.
  • Sinatra, G. M., & Pintrich, P. (2003a). The role of intentions in conceptual change learning. In G. M. Sinatra & P. Pintrich (Eds.), Intentional conceptual change (pp. 1–18). Mahway, NJ: Lawrence Erlbaum Associates.
  • Sinatra, G. M., & Pintrich, P. (2003b). Intentional conceptual change. Mahway, NJ: Lawrence Erlbaum Associates.
  • Sinatra, G. M., & Taasoobshirazi, G. (2011). Intentional conceptual change: The self-regulation of science learning. In D. H. Schunk & B. Zimmerman (Eds.), Handbook of self-regulation of learning and performance (pp. 203–216). New York: Routledge.
  • Strauss, A. L., & Corbin, J. M. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park, CA: Sage.
  • Taasoobshirazi, G., Heddy, B., Bailey, M., & Farley, J. (2016). A multivariate model of conceptual change. Instructional Science, 44(2), 125–145. doi: 10.1007/s11251-016-9372-2
  • Theobald, R., & Freeman, S. (2014). Is it the intervention or the students? Using linear regression to control for student characteristics in undergraduate STEM education research. CBE- Life Sciences Education, 13, 41–48. doi: 10.1187/cbe-13-07-0136
  • Treagust, D. F., & Duit, R. (2008). Compatibility between cultural studies and conceptual change in science education: There is more to acknowledge than to fight straw men!. Cultural Studies of Science Education, 3(2), 387–395. doi: 10.1007/s11422-008-9096-y
  • Treagust, D. F., Won, M., & McLure, F. (2018). Multiple representations and students’ conceptual change in science. In T. Amin & O. Levrini (Eds.), Converging and complementary perspectives on conceptual change (pp. 121–128). New York: Springer.
  • Tsui, C. Y., & Treagust, D. F. (2010). Evaluating secondary students’ scientific reasoning in genetics using a two-tier diagnostic instrument. International Journal of Science Education, 32(8), 1073–1098. doi: 10.1080/09500690902951429
  • Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45–69. doi: 10.1016/0959-4752(94)90018-3
  • Vosniadou, S. (2013). Conceptual change in learning and instruction: The framework theory approach. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed., pp. 11–30). New York: Taylor and Francis.
  • Yeo, S., & Zadnik, M. (2001). Introductory thermal concept evaluation: Assessing students’ understanding. The Physics Teacher, 39, 496–504. doi: 10.1119/1.1424603
  • Zembylas, M. (2005). Three perspectives on linking the cognitive and the emotional in science learning: Conceptual change, socio-constructivism and poststructuralism. Studies in Science Education, 41(1), 91–115. doi: 10.1080/03057260508560215

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.