7,083
Views
11
CrossRef citations to date
0
Altmetric
Articles

The development of early scientific literacy gaps in kindergarten children

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1988-2007 | Received 14 Apr 2020, Accepted 08 Aug 2020, Published online: 22 Aug 2020

References

  • Adams, R. J., Wu, M. L., & Wilson, M. R. (2015). ACER ConQuest: Generalised item response modelling software (Version 4) [Computer software]: Australian Council for Educational Research.
  • Anders, Y., Hardy, I., Pauen, S., Ramseger, J., Sodian, B., & Steffensky, M. (2018). Early science education - goals and process-related quality criteria for science teaching (Volume 5). Schaffhausen: Schubi Lernmedien AG.
  • Anders, Y., Roßbach, H.-G., Weinert, S., Ebert, S., Kuger, S., Lehrl, S., & Maurice, J. v. (2012). Home and preschool learning environments and their relations to the development of early numeracy skills. Early Childhood Research Quarterly, 27(2), 231–244. https://doi.org/10.1016/j.ecresq.2011.08.003
  • Becker, B. (2011). Social disparities in children's vocabulary in early childhood. Does pre-school education help to close the gap? The British Journal of Sociology, 62(1), 69–88. https://doi.org/10.1111/j.1468-4446.2010.01345.x
  • Becker, B., Klein, O., & Biedinger, N. (2013). The development of cognitive, language, and cultural skills from age 3 to 6. American Educational Research Journal, 50(3), 616–649. https://doi.org/10.3102/0002831213480825
  • Berzonsky, M. D., Miller, P. H., Woody-Ramsey, J., & Harris, Y. (1988). The relationship between judgements of animacy and sentiency: Another look. Journal of Genetic Psychology, 149(2), 223–238. https://doi.org/10.1080/00221325.1988.10532155 .
  • Blossfeld, H.-P., Roßbach, H.-G., & Maurice, J. v. (2011). Education as a lifelong process: The German National educational Panel study (NEPS), Zeitschrift für Erziehungswissenschaft (Sonderheft 14). VS Verlag für Sozialwissenschaften.
  • Bradley, R. H., Corwyn, R. F., McAdoo, H. P., & Coll, C. G. (2001). The home environments of children in the United States part I: Variations by age, ethnicity, and poverty status. Child Development, 72(6), 1844–1867.https://doi.org/10.1111/1467-8624.t01-1-00382
  • Bullock, M., Sodian, B., & Koerber, S. (2009). Doing experiments and understanding science: Development of scientific reasoning from childhood to adulthood. In W. Schneider, & M. Bullock (Eds.), Human development from early childhood to early adulthood: Findings from a 20 year longitudinal study (pp. 173–197). Psychology Press.
  • Dearing, E., McCartney, K., & Taylor, B. A. (2009). Does higher quality early child care promote low-income children’s math and reading achievement in middle childhood? Child Development, 80(5), 1329–1349. https://doi.org/10.1111/j.1467-8624.2009.01336.x
  • Ebert, S., Lockl, K., Weinert, S., Anders, Y., Kluczniok, K., & Rossbach, H.-G. (2013). Internal and external influences on vocabulary development in preschool children. School Effectiveness and School Improvement, 24(2), 138–154. https://doi.org/10.1080/09243453.2012.749791
  • Fischer, L., Rohm, T., Gnambs, T., & Carstensen, C. (2016). Linking the data of the competence tests (NEPS Survey Paper No. 1): Leibniz Institute for Educational Trajectories, National Educational Panel Study.
  • Ganzeboom, H. B. G., De Graaf, P. M., & Treiman, D. J. (1992). A standard international socio-economic index of occupational status. Social Science Research, 21(1), 1–56. https://doi.org/10.1016/0049-089X(92)90017-B
  • Gelman, R., & Brenneman, K. (2004). Science learning pathways for young children. Early Childhood Research Quarterly, 19(1), 150–158. https://doi.org/10.1002/9780470147658.chpsy0216
  • Gelman, S. A., & Kalish, C. W. (2007). Conceptual development. In D. Kuhn & R. S. Siegler (Eds.), Cognition, perception, and language. Handbook of child psychology (2nd ed., pp. 687–733). Wiley.
  • Grund, S., Lüdtke, O., & Robitzsch, A. (2016). Multiple imputation of multilevel missing data. SAGE Open, 6(4), 1–17. https://doi.org/10.1177/2158244016668220 .
  • Hahn, I., & Schöps, K. (2019). Bildungsunterschiede von Anfang an? Die Bedeutung von Struktur- und Prozessmerkmalen für die naturwissenschaftliche Kompetenz von Vorschulkindern mit und ohne Migrationshintergrund. [Educational disparities right from the start? Relevance of structural and procedural variables for the scientific literacy of preschool children with and without a migration background.] Frühe Bildung, 8(1), 3–12. https://doi.org/10.1026/2191-9186/a000405
  • Hahn, I., Schöps, K., Rönnebeck, S., Martensen, M., Hansen, S., Saß, S., Dalehefte, I. M., & Prenzel, M. (2013). Assessing scientific literacy over the lifespan – A description of the NEPS science framework and the test development. Journal for Educational Research Online, 5(2), 110–138.
  • Hanushek, E. A., & Wößmann, L. (2015). The knowledge capital of nations: Education and the economics of growth. MIT Press.
  • Hill, C. J., Bloom, H. S., Black, A. R., & Lipsey, M. W. (2008). Empirical benchmarks for interpreting effect sizes in research. Child Development Perspectives, 2(3), 172–177. https://doi.org/10.1111/j.1750-8606.2008.00061.x
  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
  • Kähler, J. (2019a). NEPS technical report for science: Scaling results of starting cohort 2 for grade 1 (NEPS Survey Paper No. 58). Leibniz Institute for Educational Trajectories, National Educational Panel Study.
  • Kähler, J. (2019b). NEPS technical report for science: Scaling results of starting cohort 2 for grade 3 (NEPS Survey Paper No. 60). Leibniz Institute for Educational Trajectories, National Educational Panel Study.
  • Klibanoff, R. S., Levine, S. C., Huttenlocher, J., Vasilyeva, M., & Hedges, L. V. (2006). Preschool children's mathematical knowledge: The effect of teacher “math talk.”. Developmental Psychology, 42(1), 59–69. https://doi.org/10.1037/0012-1649.42.1.59
  • Kluczniok, K., Lehrl, S., Kuger, S., & Roßbach, H.-G. (2013). Quality of the home learning environment during preschool age – Domains and contextual conditions. European Early Childhood Education Research Journal, 21(3), 420–438. https://doi.org/10.1080/1350293X.2013.814356
  • Koerber, S., Sodian, B., Thoermer, C., & Nett, U. (2005). Scientific reasoning in young children: Preschoolers’ ability to evaluate covariation evidence. Swiss Journal of Psychology, 64(3), 141–152. https://doi.org/10.1024/1421-0185.64.3.141 .
  • LeFevre, J.-A., Skwarchuk, S.-L., Smith-Chant, B. L., Fast, L., Kamawar, D., & Bisanz, J. (2009). Home numeracy experiences and children’s math performance in the early school years. Canadian Journal of Behavioural Science/Revue Canadienne des Sciences du Comportement, 41(2), 55–66. https://doi.org/10.1037/a0014532 .
  • Martin, M. O., Mullis, I. V. S., Foy, P., & Stanco, G. M. (2012). TIMSS 2011 international results in science. TIMSS & PIRLS International Study Center, Boston College.
  • Melhuish, E. C., Phan, M. B., Sylva, K., Sammons, P., Siraj-Blatchford, I., & Taggart, B. (2008). Effects of the home learning environment and preschool center experience upon literacy and numeracy development in early primary school. Journal of Social Issues, 64(1), 95–114. https://doi.org/10.1111/j.1540-4560.2008.00550.x .
  • Möller, K., Jonen, A., Hardy, I., & Stern, E. (2002). Die Förderung von naturwissenschaftlichem Verständnis bei Grundschulkindern durch Strukturierung der Lernumgebung. [The promotion of scientific understanding in primary school children by structuring the learning environment.] Zeitschrift für Pädagogik, 45(Beiheft), 176–191.
  • Morgan, P. L., Farkas, G., Hillemeier, M. M., & Maczuga, S. (2016). Science achievement gaps begin very early, persist, and are largely explained by modifiable factors. Educational Researcher, 45(1), 18–35. https://doi.org/10.3102/0013189X16633182
  • Muthén, L. K., & Muthén, B. O. (2012). Mplus (Version 7.4) [Computer software]. Muthén & Muthén.
  • NICHD. (2002). Child-care structure—process—outcome: Direct and indirect effects of child care quality on young children’s development. Psychological Science, 13(3), 199–206. https://doi.org/10.1111/1467-9280.00438
  • NICHD. (2003). Does quality of child care affect child outcomes at age 4(1/2)? Developmental Psychology, 39(3), 451–469. https://doi.org/10.1037/0012-1649.39.3.451
  • NICHD. (2005). Early child care and children’s development in the primary grades: Follow-up results from the NICHD study of early child care. American Educational Research Journal, 42(3), 537–570. https://doi.org/10.3102/00028312042003537 .
  • Niklas, F., & Schneider, W. (2017). Home learning environment and development of child competencies from kindergarten until the end of elementary school. Contemporary Educational Psychology, 49, 263–274. https://doi.org/10.1016/j.cedpsych.2017.03.006 .
  • OECD. (2006). Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. OECD Publishing.
  • OECD. (2018). PISA for development assessment and analytical framework: Reading, mathematics and science. OECD Publishing.
  • RStudio Team. (2015). RStudio: Integrated Development for R. RStudio, Inc. [Computer software].
  • Saçkes, M., Trundle, K. C., Bell, R. L., & O'Connell, A. A. (2011). The influence of early science experience in kindergarten on children's immediate and later science achievement: Evidence from the Early Childhood Longitudinal Study. Journal of Research in Science Teaching, 48(2), 217–235. https://doi.org/10.1002/tea.20395 .
  • Sammons, P., Anders, Y., Sylva, K., Melhuish, E. C., Siraj-Blatchford, I., Taggart, B., & Barreau, S. (2009). Children’s cognitive attainment and progress in English primary schools during key stage 2: Investigating the potential continuing influences of pre-school education. Zeitschrift für Erziehungswissenschaft, 10(Sonderheft 11), 179–198. https://doi.org/10.1007/978-3-531-91452-7_12
  • Sandoval, W. A., Sodian, B., Koerber, S., & Wong, J. (2014). Developing children's early competencies to engage with science. Educational Psychologist, 49(2), 139–152. https://doi.org/10.1080/00461520.2014.917589
  • Schöps, K. (2013). NEPS technical report for science - Scaling results of starting cohort 2 in kindergarten (NEPS Working Paper Nr. 24). University of Bamberg, National Educational Panel Study.
  • Schroedter, J. H., Lechert, Y., & Lüttinger, P. (2006). ZUMA-Methodenbericht 2006/08. Die Umsetzung der Bildungsskala ISCED-1997 für die Volkszählung 1970, die Mikrozensus-Zusatzerhebung 1971 und die Mikrozensen 1976-2004 (Version 1) [Implementation of the ISCED-1997 educational scale for the 1970 census, the 1971 additional microcensus and the 1976-2004 microcensuses (version 1)].
  • Simons, D. J., & Keil, F. C. (1995). An abstract to concrete shift in the development of biological thought: The insides story. Cognition, 56(2), 129–163. https://doi.org/10.1016/0010-0277(94)00660-D
  • Sodian, B., & Bullock, M. (2008). Scientific reasoning—Where are we now? Cognitive Development, 23(4), 431–434. https://doi.org/10.1016/j.cogdev.2008.09.003 .
  • Sodian, B., Zaitchik, D., & Carey, S. (1991). Young children's differentiation of hypothetical beliefs from evidence. Child Development, 62(4), 753–766. https://doi.org/10.1111/j.1467-8624.1991.tb01567.x .
  • Sylva, K., Melhuish, E. C., Sammons, P., Siraj-Blatchford, I., & Taggart, B. (2010). Early childhood matters: Evidence from the effective pre-school and primary education Project. Routledge.
  • Tietze, W., Meischner, T., Gänsfuß, R., Grenner, K., Schuster, K.-M., Völkel, P., & Roßbach, H.-G. (1998). Wie gut sind unsere Kindergärten? Eine Untersuchung zur pädagogischen Qualität in deutschen Kindergärten [How good are our kindergartens? An examination of the educational quality in German kindergartens]. Luchterhand.
  • Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172–223. https://doi.org/10.1016/j.dr.2006.12.001 .
  • Zinn, S., & Gnambs, T. (2018). Modeling competence development in the presence of selection bias. Behavior Research Methods, 50(6), 2426–2441. https://doi.org/10.3758/s13428-018-1021-z .