435
Views
4
CrossRef citations to date
0
Altmetric
Articles

Analysis of student perceptions of scientific models: validation of a Spanish-adapted version of the Students’ Understanding of Models in Science instrument

ORCID Icon, ORCID Icon &
Pages 2945-2958 | Received 02 Jun 2020, Accepted 25 Oct 2020, Published online: 29 Nov 2020

References

  • Bases Curriculares: 3° y 4° medio. (2019). [11th and 12th grade curriculum]. Santiago, Chile: Ministerio de Educación.
  • Physics: Teaching and learning guide Pre-University Higher 3 Syllabus 9814. (2018). Singapore: Ministry of Education.
  • Anderson, L. W., & Krathwohl , D. R. (eds.). (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. New York: Longman.
  • The Australian Curriculum. (n.d.). Physics. https://www.australiancurriculum.edu.au/senior-secondary-curriculum/science/physics/
  • Besson, U. (2010). Calculating and understanding: Formal models and causal explanations in science, common reasoning and physics teaching. Science & Education, 19(3), 225–257. https://doi.org/10.1007/s11191-009-9203-9
  • Bott, M., Karanevich, A., Garrard, L., Price, L., Mudaranthakam, D., & Gajewski, B. (2018). Confirmatory factor analysis alternative: Free, accessible CBID software. Western Journal of Nursing Research, 40(2), 257–269. https://doi.org/10.1177/0193945916681564
  • Cheng, M., & Lin, J. (2015). Investigating the relationship between students’ views of scientific models and their development of models. International Journal of Science Education, 37(15), 2453–2475. https://doi.org/10.1080/09500693.2015.1082671
  • Chittleborough, G. D., & Treagust, D. F. (2007). The modelling ability of non-major chemistry students and their understanding of the sub-microscopic level. Chemistry Education Research and Practice, 8(3), 274–292. https://doi.org/10.1039/B6RP90035F
  • Chittleborough, G. D., & Treagust, D. F. (2009). Why models are advantageous to learning science. Educación Química, 20(1), 12–17. https://doi.org/10.1016/S0187-893X(18)30003-X
  • Coll, R. K., France, B., & Taylor, I. (2005). The role of models/and analogies in science education: Implications from research. International Journal of Science Education, 27(2), 183–198. https://doi.org/10.1080/0950069042000276712
  • Competencia matemática y competencias básicas en ciencia y tecnología. (n.d.). [Mathematic Proficiency and Basic Proficiencies in Science and Technology]. https://www.mecd.gob.es/educacion/mc/lomce/el-curriculo/curriculo-primaria-eso-bachillerato/competencias-clave/ciencias.html
  • Cubero, R. (1994). Concepciones alternativas, preconceptos, errores conceptuales … ¿distinta terminología y un mismo significado? [Alternative conceptions, preconceptions, conceptual errors … a different terminology and same meaning?]. Investigación en la Escuela, 23, 35–42. http://doi.org/10.12795/IE.1994.i23.03
  • Frigg, R., & Hartmann, S. (2012, June 25). Models in science. Edward N. Zalta. https://plato.stanford.edu/entries/models-science/
  • Física: Programa de Estudio Cuarto medio. (2009). [Physics study program for 12th grade]. Ministerio de Educación.
  • Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–822. https://doi.org/10.1002/tea.3660280907
  • Halloun, I. A. (2006). Modeling theory in science education (Vol. 24, Science & Technology Education Library). Springer.
  • Harrison, A. G., & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80(5), 509–534. https://doi.org/10.1002/(SICI)1098-237X(199609)80:5<509::AID-SCE2>3.0.CO;2-F
  • Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011–1026. https://doi.org/10.1080/095006900416884
  • Hu, L., & Bentler, P. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
  • Jackson, J., Dukerich, L., & Hestenes, D. (2008). Modeling instruction: An effective model for science education. Science Educator, 17(1), 10–17.
  • Justi, R., & Gilbert, J. (2000). History and philosophy of science through models: Some challenges in the case of ‘the atom’. International Journal of Science Education, 22(9), 993–1009. https://doi.org/10.1080/095006900416875
  • Koponen, I. T. (2007). Models and modelling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16(7–8), 751–773. https://doi.org/10.1007/s11191-006-9000-7
  • Mora, C., & Herrera, D. (2009). Una revisión sobre ideas previas del concepto de fuerza [A revision of previous ideas of the concept of force]. Latin American Journal of Physics Education, 3(1), 72–86.
  • National curriculum in England: Science programmes of study. (n.d.). Retrieved April 02, 2019, from https://www.gov.uk/government/publications/national-curriculum-in-england-science-programmes-of-study/national-curriculum-in-england-science-programmes-of-study
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. The National Academies Press.
  • Novak, A. M., & Treagust, D. F. (2018). Adjusting claims as new evidence emerges: Do students incorporate new evidence into their scientific explanations? Journal of Research in Science Teaching, 55(4), 526–549. https://doi.org/10.1002/tea.21429
  • Taber, K. S. (2001). When the analogy breaks down: Modelling the atom on the solar system. Physics Education, 36(3), 222–226. https://doi.org/10.1088/0031-9120/36/3/308
  • Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357–368. https://doi.org/10.1080/09500690110066485
  • Wei, S., Liu, X., & Jia, Y. (2014). Using Rasch measurement to validate the instrument of students’ understanding of models in science (Sums). International Journal of Science and Mathematics Education, 12(5), 1067–1082. https://doi.org/10.1007/s10763-013-9459-z
  • Wells, M., Hestenes, D., & Swackhamer, G. (1995). A modeling method for high school physics instruction. American Journal of Physics, 63(7), 606–619. https://doi.org/10.1119/1.17849

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.