5,217
Views
2
CrossRef citations to date
0
Altmetric
Articles

Factors explaining students’ attitudes towards learning genetics and belief in genetic determinism

ORCID Icon & ORCID Icon
Pages 1408-1425 | Received 18 Oct 2020, Accepted 12 Apr 2021, Published online: 29 Apr 2021

References

  • Aivelo, T., & Uitto, A. (2015). Genetic determinism in the Finnish upper secondary school biology textbooks. Nordic Studies in Science Education, 11(2), 139–152. https://doi.org/10.5617/nordina.2042
  • Aivelo, T., & Uitto, A. (2019). Teachers’ choice of content and consideration of controversial and sensitive issues in teaching of secondary school genetics. International Journal of Science Education, 0(0), 1–20. https://doi.org/10.1080/09500693.2019.1694195
  • Allum, N., Sturgis, P., Tabourazi, D., & Brunton-Smith, I. (2008). Science knowledge and attitudes across cultures: A meta-analysis. Public Understanding of Science, 17(1), 35–54. https://doi.org/10.1177/0963662506070159
  • Andreychik, M. R., & Gill, M. J. (2015). Do natural kind beliefs about social groups contribute to prejudice? Distinguishing bio-somatic essentialism from bio-behavioral essentialism, and both of these from entitativity. Group Processes and Intergroup Relations, 18(4), 454–474. https://doi.org/10.1177/1368430214550341
  • Bahar, M., Johnstone, A. H., & Hansell, M. H. (1999). Revisiting learning difficulties in biology. Journal of Biological Education, 33(2), 84–86. https://doi.org/10.1080/00219266.1999.9655648
  • Banet, E., & Ayuso, E. (2000). Teaching genetics at secondary schoo : A strategy for teaching about the location of inheritance information. Science & Education, 84(3), 313–351. doi:10.1002/(SICI)1098-237X(200005)84:3<313::AID-SCE2>3.0.CO;2-N
  • Boerwinkel, D. J., Yarden, A., & Waarlo, A. J. (2017). Reaching a consensus on the definition of genetic literacy that is required from a twenty-first-century citizen. Science and Education, 26(10), 1087–1114. https://doi.org/10.1007/s11191-017-9934-y
  • Bortolotti, S. L. V., Tezza, R., de Andrade, D. F., Bornia, A. C., & de Sousa Júnior, A. F. (2013). Relevance and advantages of using the item response theory. Quality and Quantity, 47(4), 2341–2360. https://doi.org/10.1007/s11135-012-9684-5
  • Britner, S. L. (2008). Motivation in high school science students: A comparison of gender differences in life, physical, and earth science classes. Journal of Research in Science Teaching, 45(8), 955–970. https://doi.org/10.1002/tea.20249
  • Cai, L. (2010a). High-dimensional exploratory item factor analysis by a Metropolis-Hastings Robbins-Monro algorithm. Psychometrika, 75(1), 33–57. https://doi.org/10.1007/s11336-009-9136-x
  • Cai, L. (2010b). Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. Journal of Educational and Behavioral Statistics, 35(3), 307–335. https://doi.org/10.3102/1076998609353115
  • Calado, F., Scharfenberg, F.-J., & Bogner, F. (2015). To what extent do biology textbooks contribute to scientific literacy? Criteria for analysing science-technology-society-environment issues. Education Sciences, 5(4), 255–280. https://doi.org/10.3390/educsci5040255
  • Carvalho, G., Clément, P., Bogner, F. X., & Caravita, S. (2008). BIOHEAD-Citizen: Biology, Health and Environmental Education for better citizenship (FP6, Priority 7, Project N° CITC-CT-2004-506015). Brussels, Belgium: European Commission.
  • Carvalho dos Santos, V., Joaquim, L. M., El-Hani, C. N. (2012). Hybrid deterministic views about genes in biology textbooks: A key problem in genetics teaching. Science & Education, 21(4), 543–578. https://doi.org/10.1007/s11191-011-9348-1
  • Carver, R. B., Castéra, J., Gericke, N., Evangelista, N. A. M., El-Hani, C. N., & Li, D. (2017). Young adults’ belief in genetic determinism, and knowledge and attitudes towards modern genetics and genomics: The PUGGS questionnaire. PLoS ONE, 12(1), 1–24. https://doi.org/10.1371/journal.pone.0169808
  • Casanoves, M., González, Á, Salvadó, Z., Haro, J., & Novo, M. (2015). Knowledge and attitudes towards biotechnology of elementary education preservice teachers: The first Spanish experience. International Journal of Science Education, 37(17), 2923–2941. https://doi.org/10.1080/09500693.2015.1116718
  • Castéra, J., Bruguière, C., & Clément, P. (2008). Genetic diseases and genetic determinism models in French secondary school biology textbooks. Journal of Biology Education, 42(2), 53–59. doi:10.1080/00219266.2008.9656111
  • Castéra, J., & Clément, P. (2014). Teachers’ conceptions about the genetic determinism of human behaviour: A survey in 23 countries. Science & Education, 23(2), 417–443. https://doi.org/10.1007/s11191-012-9494-0
  • Chalmers, R. P. (2012). Mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48(6), 1–29. https://doi.org/10.18637/jss.v048.i06
  • Chalmers, R. P. (2015). Extended mixed-effects item response models with the MH-RM algorithm. Journal of Educational Measurement, 52(2), 200–222. https://doi.org/10.1111/jedm.12072
  • Chapman, R., Likhanov, M., Selita, F., Zakharov, I., Smith-Woolley, E., & Kovas, Y. (2019). New literacy challenge for the twenty-first century: Genetic knowledge is poor even among well educated. Journal of Community Genetics, 10(1), 73–84. https://doi.org/10.1007/s12687-018-0363-7
  • Chu, Y.-C. (2008). Learning difficulties in genetics and the development of related attitudes in Taiwanese junior high schools. University of Glasgow. http://theses.gla.ac.uk/168/
  • Clément, P., Laurent, C., & Carvalho, G. (2007). Methodology for constructing and validating a questionnaire for an international comparative analysis of teachers’ conceptions of biology, Health and environment: The European project of research BIOHEAD-citizen. In Proceedings Meeting ESERA (European Science Education Research Association), Malmö, Sweden, 21.-25.8.2007.
  • Condit, C. M., Gronnvoll, M., Landau, J., Shen, L., Wright, L., & Harris, T. M. (2009). Believing in both genetic determinism and behavioral action: A materialist framework and implications. Public Understanding of Science, 18(6), 730–746. https://doi.org/10.1177/0963662508094098
  • Črne-Hladnik, H., Peklaj, C., Košmelj, K., Hladnik, A., & Javornik, B. (2009). Assessment of Slovene secondary school students’ attitudes to biotechnology in terms of usefulness, moral acceptability and risk perception. Public Understanding of Science, 18(6), 747–758. https://doi.org/10.1177/0963662509336761
  • Dambrun, M., Kamiejski, R., Haddadi, N., & Duarte, S. (2009). Why does social dominance orientation decrease with university exposure to the social sciences? The impact of institutional socialization and the mediating role of “geneticism.”. European Journal of Social Psychology, 39(1), 88–100. https://doi.org/10.1002/ejsp
  • Dawson, V. (2007). An exploration of high school (12–17 year old) students’ understandings of, and attitudes towards biotechnology processes. Research in Science Education, 37(1), 59–73. https://doi.org/10.1007/s11165-006-9016-7
  • De Ayala, R J. (2009). The theory and practice of item response theory. New York, USA: The Guilford Press.
  • Donovan, B. M. (2014). Playing with fire? The impact of the hidden curriculum in school genetics on essentialist conceptions of race. Journal of Research in Science Teaching, 51(4), 462–496. https://doi.org/10.1002/tea.21138
  • Eagly, A. H., & Chaiken, S. (1993). The psychology of attitudes. Harcourt, Brace, & Janovich.
  • EFSA. (2019). Special Eurobarometer report: Food safety in the EU.
  • Fennema, E., & Sherman, J. (1976). Fennema-Sherman Mathematics attitudes scales: Instruments designed to measure attitudes toward the learning of mathematics by females and males. Journal for Research in Mathematics Education, 7(5), 324–326. https://doi.org/10.2307/748467
  • Finnish National Board of Education. (2003). National Core curriculum for general upper secondary school. Helsinki, Finland: Opetushallitus.
  • Fonseca, M. J., Costa, P., Lencastre, L., & Tavares, F. (2012). Multidimensional analysis of highschool students’ perceptions about biotechnology. Journal of Biological Education, 46(3), 129–139. https://doi.org/10.1080/00219266.2011.634019
  • Gardner, G. E., & Troelstrup, A. (2015). Students’ attitudes toward gene technology: Deconstructing a construct. Journal of Science Education and Technology, 24(5), 519–531. https://doi.org/10.1007/s10956-014-9542-4
  • Gericke, N. (2008). Science versus school-science – multiple models in genetics: The depiction of gene function in upper secondary textbooks and its influence on students’ understanding. Karlstadt University.
  • Gericke, N., Carver, R., Castéra, J., Evangelista, N. A. M., Marre, C. C., & El-Hani, C. N. (2017). Exploring relationships among belief in genetic determinism, genetics knowledge, and social factors. Science and Education, 26(10), 1223–1259. https://doi.org/10.1007/s11191-017-9950-y
  • Gericke, N., & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understanding of genetics. Science & Education, 16(7–8), 849–881. doi:10.1007/s11191-006-9064-4
  • Gericke, N., Hagberg, M., dos Santos, V. C., Joaquim, L. M., & El-Hani, C. N. (2014). Conceptual variation or incoherence? Textbook discourse on genes in six countries. Science & Education, 23(2), 381–416. doi:10.1007/s11191-012-9499-8
  • Gericke, N., & Smith, M. U. (2014). Twenty-first-century genetics and genomics: Contributions of HPS-informed research and pedagogy. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 423–467). Springer Netherlands. https://doi.org/10.1007/978-94-007-7654-8_15
  • Gorsuch, R. L. (1997). Exploratory factor analysis: Its role in item analysis. Journal of Personality Assessment, 68(3), 532–560. https://doi.org/10.1207/s15327752jpa6803_5
  • Henneman, L., Timmermans, D. R. M., & Van Der Wal, G. (2006). Public attitudes toward genetic testing: Perceived benefits and objections. Genetic Testing, 10(2), 139–145. https://doi.org/10.1089/gte.2006.10.139
  • Henneman, L., Vermeulen, E., Van El, C. G., Claassen, L., Timmermans, D. R. M., & Cornel, M. C. (2013). Public attitudes towards genetic testing revisited: Comparing opinions between 2002 and 2010. European Journal of Human Genetics, 21(8), 793–799. https://doi.org/10.1038/ejhg.2012.271
  • Jamieson, A., & Radick, G. (2017). Genetic determinism in the genetics curriculum: An exploratory study of the effects of Mendelian and Weldonian emphases. Science and Education, 26(10), 1261–1290. https://doi.org/10.1007/s11191-017-9900-8
  • Johansson, M. (2006). Teaching mathematics with textbooks a classroom and curricular perspective. Luleå University of Technology.
  • Kidman, G. (2010). What is an “interesting curriculum” for biotechnology education? Students and teachers opposing views. Research in Science Education, 40(3), 353–373. https://doi.org/10.1007/s11165-009-9125-1
  • Klop, T., & Severiens, S. (2007). An exploration of attitudes towards modern biotechnology: A study among Dutch secondary school students. International Journal of Science Education, 29(5), 663–679. https://doi.org/10.1080/09500690600951556
  • Kloser, M. (2013). Exploring high school biology students’ engagement with more and less epistemologically considerate texts. Journal of Research in Science Teaching, 50(10), 1232–1257. https://doi.org/10.1002/tea.21109
  • Krapp, A., & Prenzel, M. (2011). Research on interest in science: Theories, methods, and findings. International Journal of Science Education, 33(1), 27–50. https://doi.org/10.1080/09500693.2010.518645
  • Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: Revisiting students’ understanding of genetics. International Journal of Science Education, 26(2), 195–206. doi:10.1080/0950069032000072782
  • McElhinny, T. L., Dougherty, M. J., Bowling, B. V., & Libarkin, J. C. (2014). The status of genetics curriculum in higher education in the United States: Goals and assessment. Science and Education, 23(2), 445–464. https://doi.org/10.1007/s11191-012-9566-1
  • Metsämuuronen, J. (2012). Challenges of the Fennema-Sherman test in the International comparisons. International Journal of Psychological Studies, 4(3), 1–22. https://doi.org/10.5539/ijps.v4n3p1
  • Mielby, H., Sandøe, P., & Lassen, J. (2013). The role of scientific knowledge in shaping public attitudes to GM technologies. Public Understanding of Science, 22(2), 155–168. https://doi.org/10.1177/0963662511430577
  • Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16(2), 159–176. https://doi.org/10.1177/014662169201600206
  • Nelkin, D., & Lindee, S. (1995). The DNA mystique: The gene as a cultural icon. Freeman.
  • OECD. (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. https://doi.org/10.1787/9789264190511-en
  • Olofsson, A., Öhman, S., & Rashid, S. (2006). Attitudes to gene technology: The significance of trust in institutions. European Societies, 8(4), 601–624. https://doi.org/10.1080/14616690601002707
  • Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079. https://doi.org/10.1080/0950069032000032199
  • Potvin, P., & Hasni, A. (2014). Interest, motivation and attitude towards science and technology at K-12 levels: A systematic review of 12 years of educational research. Studies in Science Education, 50(1), 85–129. https://doi.org/10.1080/03057267.2014.881626
  • Prokop, P., Prokop, M., & Tunnicliffe, S. D. (2007). Is biology boring? Student attitudes toward biology. Journal of Biological Education, 42(1), 36–39. https://doi.org/10.1080/00219266.2007.9656105
  • R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from http://www.r-project.org/
  • Reckase, M. (2009). Multidimensional item response theory. Springer.
  • Redfield, R. J., & Kerfeld, C. A. (2012). “Why do we have to learn this stuff?” — A new genetics for 21st century students. PLoS Biology, 10(7). Article e1001356. https://doi.org/10.1371/journal.pbio.1001356
  • Shaw, K. R. M., Van Horne, K., Zhang, H., & Boughman, J. (2008). Essay contest reveals misconceptions of high school students in genetics content. Genetics, 178(3), 1157–1168. https://doi.org/10.1534/genetics.107.084194
  • Shostak, S., Freese, J., Link, B. G., & Phelan, J. C. (2009). The politics of the gene: Social status and beliefs about genetics for individual outcomes. Social Psychology Quarterly, 72(1), 77–93. https://doi.org/10.1177/019027250907200107
  • Smith, M., & Gericke, N. (2013). Mendel in the modern classroom. Science & Education, https://doi.org/10.1007/s11191-013-9629-y
  • Snell, K., & Tarkkala, H. (2019). Questioning the rhetoric of a “willing population” in Finnish biobanking. Life Sciences, Society and Policy, 15(1), 4. https://doi.org/10.1186/s40504-019-0094-5
  • Sturgis, P., Brunton-Smith, I., & Fife-Schaw, C. (2010). Public attitudes to genomic science: An experiment in information provision. Public Understanding of Science, 19(2), 166–180. https://doi.org/10.1177/0963662508093371
  • Tornabene, Robyn E, Sbeglia, Gena C., & Nehm, Ross H. (2020). Measuring Belief in Genetic Determinism: A Psychometric Evaluation of the PUGGS Instrument. Science & Education, 29(6), 1621–1657. https://doi.org/10.1007/s11191-020-00146-2
  • Uitto, A. (2014). Interest, attitudes and self-efficacy beliefs explaining upper-secondary school students’ orientation towards biology-related careers. International Journal of Science and Mathematics Education, 12(6), 1425–1444. https://doi.org/10.1007/s10763-014-9516-2