238
Views
0
CrossRef citations to date
0
Altmetric
Articles

Revision and manipulation of physical models as tools for developing the aquifer model by Preservice Elementary Teachers

ORCID Icon & ORCID Icon
Pages 1715-1737 | Received 09 Dec 2021, Accepted 24 Jun 2022, Published online: 05 Jul 2022

References

  • Arthurs, L. A., & Elwonger, J. M. (2018). Mental models of groundwater residence: A deeper understanding of students’ preconceptions as a resource for teaching and learning about groundwater and aquifers. Journal of Astronomy & Earth Sciences Education, 5(1), 53–66. https://doi.org/10.19030/jaese.v5i1.10192
  • Bach, J., & Márquez, C. (2017). El estudio de los fenómenos geológicos desde una perspectiva sistémica [The study of geological phenomena from a systemic perspective]. Enseñanza de las Ciencias de la Tierra 25(3), 302–309. https://raco.cat/index.php/ECT/article/view/330135/420945
  • Bahamonde, N., & Gómez Galindo, A.A. (2016). Caracterización de modelos de digestión humana a partir de sus representaciones y análisis de su evolución en un grupo de docentes y auxiliares académicos [Characterization of human digestion models from its representations and analysis of its progress in a group of teachers and supporting academic team]. Enseñanza de las Ciencias 34(1), 129–147. https://doi.org/10.5565/rev/ensciencias.1748
  • Batzri, O., Ben Zvi Assaraf, O., Cohen, C., & Orion, N. (2015). Understanding the Earth systems: Expressions of dynamic and cyclic thinking among university students. Journal of Science Education and Technology, 24(6), 761–775. https://doi.org/10.1007/s10956-015-9562-8
  • Ben-Zvi Assaraf, O., & Orion, N. (2005a). A study of junior high students’ perceptions of the water cycle. Journal of Geoscience Education, 53(4), 366–373. https://doi.org/10.5408/1089-9995-53.4.366
  • Ben-Zvi Assaraf, O., & Orion, N. (2005b). Development of system thinking skills in the context of Earth system education. Journal of Research in Science Teaching, 42(5), 518–560. https://doi.org/10.1002/tea.20061
  • Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42. https://doi.org/10.3102/2F0013189X018001032
  • Bulterman-Bos, J. (2008). Will a clinical approach make education research more relevant for practice? Educational Researcher, 37(7), 412–420. https://doi.org/10.3102/2F0013189X08325555
  • Bybee, R. W. (2014). NGSS and the next generation of science teachers. Journal of Science Teacher Education, 25(2), 211–221. https://doi.org/10.1007/s10972-014-9381-4
  • Chi, M. T. H. (1997). Quantifying qualitative analyses of verbal data: A practical guide. Journal of the Learning Sciences, 6(3), 271–315. https://doi.org/10.1207/s15327809jls0603_1
  • Dickerson, D. L., & Dawkins, K. (2004). Eighth grade students’ understandings of groundwater. Journal of Geoscience Education, 52(2), 178–181. https://doi.org/10.5408/1089-9995-52.2.178
  • Dickerson, D. L., Penick, J. E., Dawkins, K. R., & Van Sickle, M. (2007). Groundwater in science education. Journal of Science Teacher Education, 18(1), 45–61. https://doi.org/10.1007/s10972-006-9019-2
  • Donaldson, T., Fore, G. A., Filippelli, G. M., & Hess, J. L. (2020). A systematic review of the literature on situated learning in the geosciences: Beyond the classroom. International Journal of Science Education, 42(5), 722–743. https://doi.org/10.1080/09500693.2020.1727060
  • Erickson, F. (1986). Qualitative methods in research on teaching. In M. C. Wittrock (Ed.), Handbook of research on teaching (pp. 119–161). Macmillan.
  • Fedesco, H., Cavin, D., & Henares, R. (2020). Field-based learning in higher education. Journal of the Scholarship of Teaching and Learning, 20(1), 65–84. https://doi.org/10.14434/josotl.v20i1.24877
  • Forbes, C. T., Zangori, L., & Schwarz, C. V. (2015). Empirical validation of integrated learning performances for hydrologic phenomena: 3rd-grade students’ model-driven explanation-construction. Journal of Research in Science Teaching, 52(7), 895–921. https://doi.org/10.1002/tea.21226
  • García, B., & Mateos, A. (2018). Comparación entre la realización de maquetas y la visualización para mejorar la alfabetización visual en anatomía humana en futuros docentes [Comparison between the creation of models and visualization to enhance visual literacy in human anatomy in preservice teachers]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 15(3), 3605. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2018.v15.i3.3605
  • Gilbert, J. K. (2005). Visualization: A metacognitive skill in science and science education. In J. K. Gilbert (Ed.), Visualization in science education. Models and modeling in science education (pp. 9–27). Springer. https://doi.org/10.1007/1-4020-3613-2_2
  • Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert, & C. J. Boulter (Eds.), Developing models in science education (pp. 3–17). Springer.
  • Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education. Springer. https://doi.org/10.1007/978-3-319-29039-3
  • Gómez, A. A., Sanmartí, N., & Pujol, R. M. (2007). Fundamentación teórica y diseño de una unidad didáctica para la enseñanza del modelo ser vivo en la escuela primaria [Theoretical foundations and design of a teaching unit to teach the model of living being in primary school]. Enseñanza de las Ciencias. Revista de Investigación y Experiencias Didácticas, 25(3), 325–340. https://doi.org/10.5565/rev/ensciencias.3699
  • Gray, K. R., Owens, K. D., Steer, D. N., McConnell, D. A., & Knight, C. C. (2011). An exploratory study using hands-on physical models in a large introductory Earth science classroom: Student attitudes and lessons learned. Electronic Journal of Science Education, 12(2), 1–23. http://ejse.southwestern.edu/article/view/7391
  • Hardy, I., Jonen, A., Möller, K., & Stern, E. (2006). Effects of instructional support within constructivist learning environments for elementary school students’ understanding of “floating and sinking”. Journal of Educational Psychology, 98(2), 307–326. https://doi.org/10.1037/0022-0663.98.2.307
  • Hmelo-Silver, C. E., Jordan, R., Eberbach, C., & Sinha, S. (2017). Systems learning with a conceptual representation: A quasi-experimental study. Instructional Science, 45(1), 53–72. https://doi.org/10.1007/s11251-016-9392-y
  • Hmelo-Silver, C. E., & Pfeffer, M. G. (2004). Comparing expert and novice understanding of a complex system from the perspective of structures, behaviors, and functions. Cognitive Science, 28(1), 127–138. https://doi.org/10.1016/S0364-0213(03)00065-X
  • Intergovernmental Panel on Climate Change. (2021). Sixth Assessment Report https://www.ipcc.ch/assessment-report/ar6/
  • Izquierdo-Aymerich, M., & Adúriz-Bravo, A. (2003). Epistemological foundations of school science. Science and Education, 12(1), 27–43. https://doi.org/10.1023/A:1022698205904
  • Jiménez-Aleixandre, M. P., & Crujeiras, B. (2017). Epistemic practices and scientific practices in science education. In K. S. Taber, & B. Akpan (Eds.), Science education (pp. 69–80). Brill Sense.
  • Kastens, K. A., & Rivet, A. (2010). Using analogical mapping to assess the affordances of scale models used in Earth and environmental science education. In C. Hölscher (Ed.), Spatial Cognition VII, NNAI 6222 (pp. 112–124). Springer-Verlag.
  • King, C. (2016). Fostering deep understanding through the use of geoscience investigations, models and thought experiments: The earth science education unit and earth learning idea experiences. In C. Vasconcelos (Ed.), Geoscience education (pp. 3–24). Springer. https://doi.org/10.1007/978-3-319-43319-6_2
  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86. https://doi.org/10.1207/s15326985ep4102_1
  • Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. SAGE Publications.
  • Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), 1–6. https://doi.org/10.1126/sciadv.1500323
  • Miller, A. R., & Kastens, K. A. (2018). Investigating the impacts of targeted professional development around models and modeling on teachers’ instructional practice and student learning. Journal of Research in Science Teaching, 55(5), 641–663. https://doi.org/10.1002/tea.21434
  • Mogk, D. W., & Goodwin, C.. (2012). Learning in the field: Synthesis of research on thinking and learning in the geosciences. In K. A. Kastens C. A. Manduca (Ed.), Earth and Mind II: A Synthesis of Research on Thinking and Learning in the Geosciences (pp. 131–163). Geological Society of America) https://doi.org/10.1130/2012.2486(24)
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. The National Academies Press.
  • Oh, P S. (2019). Features of modeling-based abductive reasoning as a disciplinary practice of inquiry in Earth Science. Science and Education, 28, 731–757. https://doi.org/10.1007/s11191-019-00058-w
  • Organisation for Economic Co-operation and Development. (2020). PISA 2024 strategic vision and direction for science. OECD Publishing. https://www.oecd.org/pisa/publications/pisa-2024-assessment-analytical-framework-science-strategic-vision-proposal.htm
  • Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25(2), 177–196. https://doi.org/10.1007/s10972-014-9384-1
  • Pan, Y.-T., & Liu, S.-C. (2018). Students’ understanding of a groundwater system and attitudes towards groundwater use and conservation. International Journal of Science Education, 40(5), 564–578. https://doi.org/10.1080/09500693.2018.1435922
  • Petcovic, H., & Stokes, A. (2014). Geoscientists’ perceptions of the value of undergraduate field education. GSA Today, 24(7), 4–10. https://doi.org/10.1130/GSATG196A.1
  • Sadler, T. D., Nguyen, H., & Lankford, D. (2016). Water systems understandings: A framework for designing instruction and considering what learners know about water. WIRES Water, 5(1), e1178. https://doi.org/10.1002/wat2.1178
  • Santini, J., Bloor, T., & Sensevy, G. (2018). Modeling conceptualization and investigating teaching effectiveness : A comparative case study of earthquakes studied in classroom practice and in science. Science & Education, 27(9-10), 921–961. https://doi.org/10.1007/s11191-018-0016-6
  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. https://doi.org/10.1002/tea.20311
  • Sensevy, G., Tiberghien, A., Santini, J., Laubé, S., & Griggs, P. (2008). An epistemological approach to modeling: Cases studies and implications for science teaching. Science Education, 92(3), 424–446. https://doi.org/10.1002/sce.20268
  • Snapir, Z., Eberbach, C., Ben-Zvi-Assaraf, O., Hmelo-Silver, C., & Tripto, J. (2017). Characterising the development of the understanding of human body systems in high-school biology students – a longitudinal study. International Journal of Science Education, 39(15), 2092–2127. https://doi.org/10.1080/09500693.2017.1364445
  • Tiberghien, A., & Sensevy, G. (2015). Transposition didactique [Didactic transposition]. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 1082–1085). Springer. https://doi.org/10.1007/978-94-007-2150-0
  • Torres, J., & Vasconcelos, C. (2016). Models in geoscience classes: How can teachers use them? In C. Vasconcelos (Ed.), Geoscience education (pp. 25–41). Springer. https://doi.org/10.1007/978-3-319-43319-6_2
  • Unterbruner, U., Hilberg, S., & Schiffl, I. (2016). Understanding groundwater-students’ pre-conceptions and conceptual change by means of a theory-guided multimedia learning program. Hydrology and Earth System Sciences, 20(6), 2251–2266. https://doi.org/10.5194/hess-20-2251-2016
  • Uskola, A., & Seijas, N. (2021). Use of data obtained in the field and its contribution to the process of construction of the geological change model by Preservice Elementary teachers. Research in Science and Techonology Education. Advance online publication. https://doi.org/10.1080/02635143.2021.2005561
  • Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher student interaction: A decade of research. Educational Psychology Review, 22(3), 271–296. https://doi.org/10.1007/s10648-010-9127-6
  • Vo, T., Forbes, C., Zangori, L., & Schwarz, C. V. (2019). Longitudinal investigation of primary inservice teachers’ modelling the hydrological phenomena. International Journal of Science Education, 41(18), 2788–2807. https://doi.org/10.1080/09500693.2019.1698786
  • Vörösmary, C. J., McIntyre, P. B., Gessner, O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Reidy Liermann, C., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555–561. https://doi.org/10.1038/nature09440
  • Windschitl, M. (2003). Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice? Science Education, 87(1), 112–143. https://doi.org/10.1002/sce.10044
  • Zamorano, P. O., del Pozo, J. R., & Tomás, M. J. A. (1978). Mapa geológico de la hoja n° 111 (Orduña). [Geological map of sheet no. 111 (Orduña)] In IGME (Ed.), Mapa geológico de España E: 1:50.000. Segunda Serie (MAGNA) https://info.igme.es/cartografiadigital/geologica/Magna50Hoja.aspx?Id = 111&language = es
  • Zembal-Saul, C. (2009). Learning to teach elementary school science as argument. Science Education, 93(4), 687–719. https://doi.org/10.1002/sce.20325

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.