1,808
Views
0
CrossRef citations to date
0
Altmetric
Articles

Students’ interest in particle physics: conceptualisation, instrument development, and evaluation using Rasch theory and analysis

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2353-2380 | Received 19 Nov 2021, Accepted 05 Sep 2022, Published online: 21 Sep 2022

References

  • Ainley, M., & Ainley, J. (2011). A cultural perspective on the structure of student interest in science. International Journal of Science Education, 33(1), 51–71. https://doi.org/10.1080/09500693.2010.518640
  • Bennett, J., Lubben, F., & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91(3), 347–370. https://doi.org/10.1002/sce.20186
  • Blankenburg, J. S., Höffler, T. N., Peters, H., & Parchmann, I. (2016). The effectiveness of a project day to introduce sixth grade students to science competitions. Research in Science & Technological Education, 34(3), 342–358. https://doi.org/10.1080/02635143.2016.1222361
  • Blankenburg, J. S., & Scheersoi, A. (2018). Interesse und Interessenentwicklung [interest and development of interest]. In D. Krüger, I. Parchmann, & H. Schecker (Eds.), Theorien in der naturwissenschaftsdidaktischen forschung (pp. 245–259). Springer. https://doi.org/10.1007/978-3-662-56320-5_15.
  • Bond, T. G., Yan, Z., & Heene, M. (2020). Applying the rasch model: Fundamental measurement in the human sciences (fourth edn.). Routledge. https://doi.org/10.4324/9780429030499.
  • Boone, W. J., & Staver, J. R. (2020). Advances in rasch analyses in the human sciences. Springer. https://doi.org/10.1007/978-3-030-43420-5.
  • Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human sciences. Springer. https://doi.org/10.1007/978-94-007-6857-4.
  • Bundesrecht konsolidiert [Austrian federal law consolidated]. (2022). Gesamte Rechtsvorschrift für Lehrpläne – allgemeinbildende höhere Schulen [Complete act for curricula – general secondary schools] (Publication no. BGBl 88/1985). https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10008568.
  • Cheung, D. (2018). The key factors affecting students’ individual interest in school science lessons. International Journal of Science Education, 40(1), 1–23. https://doi.org/10.1080/09500693.2017.1362711
  • de Barba, P. G., Kennedy, G. E., & Ainley, M. D. (2016). The role of students' motivation and participation in predicting performance in a MOOC. Journal of Computer Assisted Learning, 32(3), 218–231. https://doi.org/10.1111/jcal.12130
  • Dierks, P. O., Höffler, T. N., Blankenburg, J. S., Peters, H., & Parchmann, I. (2016). Interest in science: A RIASEC-based analysis of students’ interests. International Journal of Science Education, 38(2), 238–258. https://doi.org/10.1080/09500693.2016.1138337
  • Drechsel, B., Carstensen, C., & Prenzel, M. (2011). The role of content and context in PISA interest scales: A study of the embedded interest items in the PISA 2006 science assessment. International Journal of Science Education, 33(1), 73–95. https://doi.org/10.1080/09500693.2010.518646
  • Duranti, A., & Goodwin, C. (1992). Rethinking context: An introduction. In A. Duranti, & C. Goodwin (Eds.), Rethinking context: Language as an interactive phenomenon (pp. 1–42). Cambridge University Press.
  • Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data (revised edn.). Bradford Books/The MIT Press.
  • Frey, A., Taskinen, P., & Schütte, K. (2009). PISA 2006 Skalenhandbuch. Dokumentation der Erhebungsinstrumente [PISA 2006 scale book. Documentation of the measurement instruments]. Waxmann.
  • Galton, M. (2009). Moving to secondary school: Initial encounters and their effects. Perspectives on Education, 2, 5–21. ISSN 1758-7956 (online).
  • Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28(9), 957–976. https://doi.org/10.1080/09500690600702470
  • Habig, S., Blankenburg, J., van Vorst, H., Fechner, S., Parchmann, I., & Sumfleth, E. (2018). Context characteristics and their effects on students’ situational interest in chemistry. International Journal of Science Education, 40(10), 1154–1175. https://doi.org/10.1080/09500693.2018.1470349
  • Härtig, H., Nordine, J. C., & Neumann, K. (2020). Contextualization in the assessment of students’ learning about science. In I. Sánchez Tapia (Ed.), International perspectives on the contextualization of science education (pp. 113–144). Springer. https://doi.org/10.1007/978-3-030-27982-0_6.
  • Häußler, P. (1987). Measuring students’ interest in physics - design and results of a cross-sectional study in the federal republic of Germany. International Journal of Science Education, 9(1), 79–92. https://doi.org/10.1080/0950069870090109
  • Häußler, P., Hoffman, L., Langeheine, R., Rost, J., & Sievers, K. (1996). Qualitative Unterschiede im Interesse an Physik und Konsequenzen für den Unterricht [Qualitative differences in interest in physics and consequences for teaching]. Zeitschrift für Didaktik der Naturwissenschaften, 2(3), 57–69.
  • Häußler, P., Hoffman, L., Langeheine, R., Rost, J., & Sievers, K. (1998). A typology of students’ interest in physics and the distribution of gender and age within each type. International Journal of Science Education, 20(2), 223–238. https://doi.org/10.1080/0950069980200207
  • Häußler, P., Lehrke, M., & Hoffmann, L. (1998). Die IPN-Interessenstudie Physik [The IPN study about interest in physics]. IPN Kiel.
  • Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127. https://doi.org/10.1207/s15326985ep4102_4
  • Kalender, Z. Y., Marshman, E., Schunn, C. D., Nokes-Malach, T. J., & Singh, C. (2019). Gendered patterns in the construction of physics identity from motivational factors. Physical Review Physics Education Research, 15, 2. https://doi.org/10.1103/PhysRevPhysEducRes.15.020119
  • Kauertz, A., & Fischer, H. E. (2006). Assessing students’ level of knowledge and analysing the reasons for learning difficulties in physics by rasch analysis. In X. Liu, & W. J. Boone (Eds.), Applications of rasch measurement in science education (pp. 212–246). JAM Press.
  • Kirschner, S., Borowski, A., Fischer, H. E., Gess-Newsome, J., & von Aufschnaiter, C. (2016). Developing and evaluating a paper-and-pencil test to assess components of physics teachers’ pedagogical content knowledge. International Journal of Science Education, 38(8), 1343–1372. https://doi.org/10.1080/09500693.2016.1190479
  • Krapp, A. (2002). Structural and dynamic aspects of interest development: Theoretical considerations from an ontogenetic perspective. Learning and Instruction, 12(4), 383–409. https://doi.org/10.1016/S0959-4752(01)00011-1
  • Krapp, A., & Prenzel, M. (2011). Research on interest in science: Theories, methods, and findings. International Journal of Science Education, 33(1), 27–50. https://doi.org/10.1080/09500693.2010.518645
  • Lavonen, J., Ávalos, B., Upadyaya, K., Araneda, S., Juuti, K., Cumsille, P., Inkinen, J., & Salmela-Aro, K. (2021). Upper secondary students’ situational interest in physics learning in Finland and Chile. International Journal of Science Education, 43(16), 2577–2596. https://doi.org/10.1080/09500693.2021.1978011
  • Levrini, O., De Ambrosis, A., Hemmer, S., Laherto, A., Malgieri, M., Pantano, O., & Tasquier, G. (2017). Understanding first-year students’ curiosity and interest about physics—lessons learned from the HOPE project. European Journal of Physics, 38(2), 025701. https://doi.org/10.1088/1361-6404/38/2/025701
  • Li, C. Y., Romero, S., Bonilha, H. S., Simpson, K. N., Simpson, A. N., Hong, I., & Velozo, C. A. (2018). Linking existing instruments to develop an activity of daily living item bank. Evaluation & the Health Professions, 41(1), 25–43. https://doi.org/10.1177/0163278716676873
  • Linacre, J. (2021). A User’s guide to WINSTEPS, MINISTEP, Rasch model computer programs. Program Manual 5.1.7. https://www.winsteps.com/winman/copyright.htm.
  • Linacre, J. M. (2002). Optimizing rating scale category effectiveness. Journal of Applied Measurement, 3(1), 85–106.
  • Liu, X. (2010). Using and developing measurement instruments in science education: A rasch modeling approach. Information Age Publishing.
  • Luo, T., Wang, J., Liu, X., & Zhou, J. (2019). Development and application of a scale to measure students’ STEM continuing motivation. International Journal of Science Education, 41(14), 1885–1904. https://doi.org/10.1080/09500693.2019.1647472
  • Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among U.S. Students. Science Education, 95(5), 877–907. https://doi.org/10.1002/sce.20441
  • Mang, J., Ustjanzew, N., Leßke, I., Schiepe-Tiska, A., & Reiss, K. (2019). PISA 2015 Skalenhandbuch. Dokumentation der Erhebungsinstrumente [PISA 2015 scale book. Documentation of the measurement instruments]. Waxmann.
  • Masters, G. N. (1982). A rasch model for partial credit scoring. Psychometrika, 47(2), 149–174. https://doi.org/10.1007/BF02296272
  • Mesic, V., & Muratovic, H. (2011). Identifying predictors of physics item difficulty: A linear regression approach. Physical Review Special Topics – Physics Education Research, 7(1), https://doi.org/10.1103/PhysRevSTPER.7.010110
  • Mestre, J. P. (2002). Probing adults’ conceptual understanding and transfer of learning via problem posing. Journal of Applied Developmental Psychology, 23(1), 9–50. https://doi.org/10.1016/S0193-3973(01)00101-0
  • Mitchell, M. (1993). Situational interest: Its multifaceted structure in the secondary school mathematics classroom. Journal of Educational Psychology, 85(3), 424–436. https://doi.org/10.1037/0022-0663.85.3.424
  • Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS Advanced 2015 International Results in Advanced Mathematics and Physics. Boston College, TIMSS & PIRLS International Study Center. http://timssandpirls.bc.edu/timss2015/international-results/advanced/.
  • National Research Council. (2013). Next generation science standards: For states, by states. The National Academies Press. https://doi.org/10.17226/18290.
  • Neumann, I., Neumann, K., & Nehm, R. (2011). Evaluating instrument quality in science education: Rasch-based analyses of a nature of science test. International Journal of Science Education, 33(10), 1373–1405. https://doi.org/10.1080/09500693.2010.511297
  • Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50(2), 162–188. https://doi.org/10.1002/tea.21061
  • Nuutila, K., Tapola, A., Tuominen, H., Kupiainen, S., Pásztor, A., & Niemivirta, M. (2020). Reciprocal predictions between interest, self-efficacy, and performance during a task. Frontiers in Education, 5, 36. https://doi.org/10.3389/feduc.2020.00036
  • OECD. (2007). PISA 2006 science competencies for tomorrow’s world. Volume 1. Analysis. PISA. OECD Publishing.
  • OECD. (2016). PISA 2015 results (volume I): excellence and equity in education. PISA, OECD Publishing. https://doi.org/10.1787/9789264266490-en.
  • OECD. (2017). PISA 2015 assessment and analytical framework: Science, reading, mathematic, financial literacy and collaborative problem solving. PISA, OECD Publishing. https://doi.org/10.1787/9789264281820-en.
  • Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079. https://doi.org/10.1080/0950069032000032199
  • Planinic, M., Boone, W. J., Susac, A., & Ivanjek, L. R. (2019). Rasch analysis in physics education research: Why measurement matters. Physical Review Physics Education Research, 15(2), 020111. https://doi.org/10.1103/PhysRevPhysEducRes.15.020111
  • Rösler, M., Wellnitz, N., & Mayer, J. (2018). The role of interesting and motivating contexts in the assessment of content knowledge and decision-making. In N. Gericke, & M. Grace (Eds.), Challenges in biology education research (pp. 135–150). Karlstad University Printing Office.
  • Rost, J., Sievers, K., Häußler, P., Hoffmann, L., & Langeheine, R. (1999). Struktur und Veränderung des Interesses an Physik bei Schülern der 6. Bis 10. Klassenstufe. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 31(1), 18–31. https://doi.org/10.1026//0049-8637.31.1.18
  • Sandmann, A. (2014). Lautes Denken–die Analyse von Denk-, Lern-und Problemlöseprozessen [Thinking aloud—The analysis of thinking, learning, and problem-solving processes]. In D. Krüger, I. Parchmann, & H. Schecker (Eds.), Methoden in der naturwissenschaftsdidaktischen forschung (pp. 179–188). Springer Spektrum. https://doi.org/10.1007/978-3-642-37827-0_15.
  • Sievers, K. (1999). Struktur und Veränderung von Physikinteressen bei Jugendlichen [Structure and change of physics interest among adolescents]. Universität Kiel.
  • Sjøberg, S., & Schreiner, C. (2012). Results and perspectives from the ROSE project: Attitudinal aspects of young people and science in a comparative perspective. In D. Jorde, & J. Dillon (Eds.), Science education research and practice in Europe. Cultural perpectives in science education, 5 (pp. 203–236). Sense Publishers. https://doi.org/10.1007/978-94-6091-900-8_9.
  • Tyson, W., Lee, R., Borman, K. M., & Hanson, M. A. (2007). Science, technology, engineering, and mathematics (STEM) pathways: High school science and math coursework and postsecondary degree attainment. Journal of Education for Students Placed at Risk (JESPAR), 12(3), 243–270. https://doi.org/10.1080/10824660701601266
  • Vorholzer, A., von Aufschnaiter, C., & Kirschner, S. (2016). Entwicklung und Erprobung eines Tests zur Erfassung des Verständnisses experimenteller Denk- und Arbeitsweisen. Zeitschrift für Didaktik der Naturwissenschaften, 22(1), 25–41. https://doi.org/10.1007/s40573-015-0039-3
  • Wright, B., & Stone, M. (1979). Best test design. MESA Press.
  • Yao, J.-X., Guo, Y.-Y., & Neumann, K. (2017). Refining a learning progression of energy. International Journal of Science Education, 39(17), 2361–2381. https://doi.org/10.1080/09500693.2017.1381356