298
Views
0
CrossRef citations to date
0
Altmetric
Articles

Exploring the impact of disciplinary context on students’ dynamic transfer of learning when addressing problems that apply the first law of thermodynamics

ORCID Icon, ORCID Icon & ORCID Icon
Pages 571-592 | Received 08 Aug 2022, Accepted 09 Jan 2023, Published online: 22 Jan 2023

References

  • Barzilai, S., & Chinn, C. A. (2018). On the goals of epistemic education: Promoting apt epistemic performance. Journal of the Learning Sciences, 27(3), 353–389. https://doi.org/10.1080/10508406.2017.1392968
  • Becker, K., & Park, K. (2011). Effects of integrative approaches among science, technology, engineering, and mathematics (STEM) subjects on students’ learning : A preliminary meta-analysis. Journal of STEM Education, 12(5 & 6), 23–37.
  • Bing, T. J., & Redish, E. F. (2009). Analyzing problem solving using math in physics: Epistemological framing via warrants. Physical Review Special Topics - Physics Education Research, 5(18), 020108. https://doi.org/10.1103/PhysRevSTPER.5.020108
  • Bracken, L. J., & Oughton, E. A. (2006). ‘What do you mean ?’ The importance of language in developing interdisciplinary research. Transactions of the Institute of British Geographers, 31(3), 371–382. https://doi.org/10.1111/j.1475-5661.2006.00218.x
  • Bransford, J. D., & Schwartz, D. L. (1999). Chapter 3: Rethinking transfer: A simple proposal with multiple implications. Review of Research in Education, 24(1), 61–100. https://doi.org/10.3102/0091732X024001061
  • Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3–11. https://doi.org/10.1111/j.1949-8594.2011.00109.x
  • Christiansen, F. V., & Rump, C. (2008). Three conceptions of thermodynamics: Technical matrices in science and engineering. Research in Science Education, 38(5), 545–564. https://doi.org/10.1007/s11165-007-9061-x
  • Clark, J. W., Thompson, J. R., & Mountcastle, D. B. (2014, June 15-18). Investigating student conceptual difficulties in thermodynamics across multiple disciplines: The first law and P-V diagrams [Paper Presentation]. 2014 ASEE Annual Conference & Exposition, Indianapolis, Indiana, United States. https://doi.org/10.18260/1-2–20713.
  • Cobb, P., & Bowers, J. (1999). Cognitive and situated learning perspectives in theory and practice. Educational Researcher, 28(2), 4–15. https://doi.org/10.3102/0013189X028002004
  • Cooper, M. M. (2020). The crosscutting concepts: Critical component or ‘third wheel’ of three-dimensional learning? Journal of Chemical Education, 97(4), 903–909. https://doi.org/10.1021/acs.jchemed.9b01134
  • Cooper, M. M., & Klymkowsky, M. W. (2013a). Chemistry, life, the universe, and everything: A new approach to general chemistry, and a model for curriculum reform. Journal of Chemical Education, 90(9), 1116–1122. https://doi.org/10.1021/ed300456y
  • Cooper, M. M., & Klymkowsky, M. W. (2013b). The trouble with chemical energy: Why understanding bond energies requires an interdisciplinary systems approach. CBE-Life Sciences Education, 12(2), 306–312. https://doi.org/10.1187/cbe.12-10-0170
  • Detterman, D. K. (1993). The case for the prosecution: Transfer as an epiphenomenon. In D. K. Detterman, & R. J. Sternberg (Eds.), Transfer on trial: Intelligence, cognition, and instruction (pp. 1–24). Ablex Publishing.
  • de Vries, H., Elliott, M. N., Kanouse, D. E., & Teleki, S. S. (2008). Using pooled kappa to summarize interrater agreement across many items. Field Methods, 20(3), 272–282. https://doi.org/10.1177/1525822X08317166
  • Ding, L., Chabay, R., & Sherwood, B. (2013). How do students in an innovative principle-based mechanics course understand energy concepts? Journal of Research in Science Teaching, 50(6), 722–747. https://doi.org/10.1002/tea.21097
  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2-3), 105–225. https://doi.org/10.1080/07370008.1985.9649008
  • Dori, Y. J., & Sasson, I. (2013). A three-attribute transfer skills framework – Part I: Establishing the model and its relation to chemical education. Chemistry Education Research and Practice, 14(4), 363–375. https://doi.org/10.1039/C3RP20093K
  • Engelbrecht, J., Harding, A., & du Preez, J. (2007). Long-term retention of basic mathematical knowledge and skills with engineering students. European Journal of Engineering Education, 32(6), 735–744. https://doi.org/10.1080/03043790701520792
  • Geller, B. D., Gouvea, J., Dreyfus, B. W., Sawtelle, V., Turpen, C., & Redish, E. F. (2019). Bridging the gaps: How students seek disciplinary coherence in introductory physics for life science. Physical Review Physics Education Research, 15(2), 020142. https://doi.org/10.1103/PhysRevPhysEducRes.15.020142
  • Gouvea, J., Sawtelle, V., & Nair, A. (2019). Epistemological progress in physics and its impact on biology. Physical Review Physics Education Research, 15(1), 010107. https://doi.org/10.1103/PhysRevPhysEducRes.15.010107
  • Greene, J. A., Chinn, C. A., & Deekens, V. M. (2021). Experts’ reasoning about the replication crisis: Apt epistemic performance and actor-oriented transfer. Journal of the Learning Sciences, 30(3), 351–400. https://doi.org/10.1080/10508406.2020.1860992
  • Greeno, J. G., Moore, J. L., & Smith, D. R. (1993). Transfer of situated learning. In D. K. Detterman, & R. J. Sternberg (Eds.), Transfer on trial: Intelligence, cognition, and instruction (pp. 99–167). Ablex Publishing.
  • Hadfield, L. C., & Wieman, C. E. (2010). Student interpretations of equations related to the first law of thermodynamics. Journal of Chemical Education, 87(7), 750–755. https://doi.org/10.1021/ed1001625
  • Hall, W. L. (2017). A qualitative study of the ways students from the biological and life sciences solve calculus accumulation tasks [Doctoral dissertation, North Carolina State University]. ProQuest. https://www.proquest.com/docview/1994600439/659FC0337B4C4E1BPQ.
  • Hallgren, K. A. (2012). Computing inter-rater reliability for observational data: An overview and tutorial. Tutorials in Quantitative Methods for Psychology, 8(1), 23–34. https://doi.org/10.20982/tqmp.08.1.p023
  • Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89–119). Information Age Publishing.
  • Hardy, J. G., Sdepanian, S., Stowell, A., Aljohani, A. D., Allen, M. J., Anwar, A., Barton, D., Baum, J. V., Bird, D., Blaney, A., Brewster, L., Cheneler, D., Efremova, O., Entwistle, M., Esfahani, R. N., Firlak, M., Foito, A., Forciniti, L., Geissler, S. A., … Wright, K. L. (2021). Potential for chemistry in multidisciplinary, interdisciplinary, and transdisciplinary teaching activities in higher education. Journal of Chemical Education, 98(4), 1124–1145. https://doi.org/10.1021/acs.jchemed.0c01363
  • Hartley, L. M., Momsen, J., Maskiewicz, A., & D’Avanzo, C. D. (2012). Energy and matter: Differences in discourse in physical and biological sciences can be confusing for introductory biology students. BioScience, 62(5), 488–496. https://doi.org/10.1525/bio.2012.62.5.10
  • Hoban, R. A., Finlayson, O. E., & Nolan, B. C. (2013). Transfer in chemistry: A study of students’ abilities in transferring mathematical knowledge to chemistry. International Journal of Mathematical Education in Science and Technology, 44(1), 14–35. https://doi.org/10.1080/0020739X.2012.690895
  • Kohn, K. P., Underwood, S. M., & Cooper, M. M. (2018). Energy connections and misconnections across chemistry and biology. CBE—Life Sciences Education, 17(1), ar3–17. https://doi.org/10.1187/cbe.17-08-0169
  • Lancor, R. (2014). Using metaphor theory to examine conceptions of energy in biology, chemistry, and physics. Science & Education, 23(6), 1245–1267. https://doi.org/10.1007/s11191-012-9535-8
  • Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge University Press.
  • Linenberger, K. J., & Bretz, S. L. (2012). A novel technology to investigate students’ understandings of enzyme representations. Journal of College Science Teaching, 42(1), 45–49.
  • Lobato, J. (2003). How design experiments can inform a rethinking of transfer and vice versa. Educational Researcher, 32(1), 17–20. https://doi.org/10.3102/0013189X032001017
  • Lobato, J. (2012). The actor-oriented transfer perspective and its contributions to educational research and practice. Educational Psychologist, 47(3), 232–247. https://doi.org/10.1080/00461520.2012.693353
  • Macrie-Shuck, M., & Talanquer, V. (2020). Exploring students’ explanations of energy transfer and transformation. Journal of Chemical Education, 97(12), 4225–4234. https://doi.org/10.1021/acs.jchemed.0c00984
  • Meltzer, D. E. (2007). Investigation of student learning in thermodynamics and implications for instruction in chemistry and engineering. AIP Conference Proceedings, 883, 38–41. https://doi.org/10.1063/1.2508686
  • Nagel, M. L., & Lindsey, B. A. (2015). Student use of energy concepts from physics in chemistry courses. Chemistry Education Research and Practice, 16(1), 67–81. https://doi.org/10.1039/C4RP00184B
  • National Academies of Sciences, Engineering, and Medicine. (2018). The integration of the humanities and arts with sciences, engineering, and medicine in higher education: Branches from the same tree. The National Academies Press.
  • National Science Board. (2015). Revisiting the STEM workforce: A Companion to Science and Engineering Indicators 2014. (NSB-2015-10).
  • National Science & Technology Council. (2018). Charting a Course for Success: America’s Strategy for STEM Education. http://www.whitehouse.gov/ostp.
  • Next Generation Science Standards Lead States. (2013). Next generation science standards: For states, by states (Appendix G – Crosscutting concepts). The National Academies Press.
  • Park, S., Kite, V., Suh, J. K., Jung, J., & Rachmatullah, A. (2022). Investigation of the relationships among science teachers’ epistemic orientations, epistemic understanding, and implementation of Next Generation Science Standards science practices. Journal of Research in Science Teaching, 59(4), 561–584. https://doi.org/10.1002/tea.21737
  • Parobek, A. P., Chaffin, P. M., & Towns, M. H. (2021, July 26-29). Students’ transfer of first law concepts across engineering and science discipline-specific contexts [Paper Presentation]. 2021 ASEE Annual Conference & Exposition, Virtual. https://peer.asee.org/37770.
  • Rebello, N. S., Cui, L., Bennett, A. G., Zollman, D. A., & Ozimek, D. J. (2007). Transfer of learning in problem solving in the context of mathematics and physics. In D. H. Jonassen (Ed.), Learning to solve complex scientific problems (pp. 223–246). Routledge.
  • Rebello, N. S., Zollman, D. A., Allbaugh, A. R., Engelhardt, P. V., Gray, K. E., Hrepic, Z., & Itza-Ortiz, S. F. (2005). Dynamic transfer: A perspective from physics education research. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 217–250). Information Age Publishing.
  • Redish, E. F., Bauer, C., Carleton, K. L., Cooke, T. J., Cooper, M., Crouch, C. H., Dreyfus, B. W., Geller, B., Giannini, J., Gouvea, J. S., Klymkowsky, M. W., Losert, W., Moore, K., Presson, J., Sawtelle, V., Thompson, K. V., Turpen, C., & Zia, R. K. P. (2014). NEXUS/Physics: An interdisciplinary repurposing of physics for biologists. American Journal of Physics, 82(5), 368–377. https://doi.org/10.1119/1.4870386
  • Redish, E. F., Sawtelle, V., & Turpen, C. (2014, May 1-3). The role physics can play in a multi-disciplinary curriculum for non-physics scientists and engineers [Paper Presentation]. Frontiers in Mathematics and Science Education Research 2014, Famagusta, North Cyprus.
  • Redish, E. F., & Smith, K. A. (2008). Looking beyond content: Skill development for engineers. Journal of Engineering Education, 97(3), 295–307. https://doi.org/10.1002/j.2168-9830.2008.tb00980.x
  • Royer, J. M., Mestre, J. P., & Dufresne, R. J. (2005). Introduction: Framing the transfer problem. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. vii–xxvi). Information Age Publishing.
  • Schwartz, D. L., Chase, C. C., & Bransford, J. D. (2012). Resisting overzealous transfer: Coordinating previously successful routines with needs for new learning. Educational Psychologist, 47(3), 204–214. https://doi.org/10.1080/00461520.2012.696317
  • Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Harvard University Press.
  • Teichert, M. A., Tien, L. T., Anthony, S., & Rickey, D. (2008). Effects of context on students’ molecular-Level ideas. International Journal of Science Education, 30(8), 1095–1114. https://doi.org/10.1080/09500690701355301
  • Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data. American Journal of Evaluation, 27(2), 237–246. https://doi.org/10.1177/1098214005283748
  • Vale, C., Campbell, C., Speldewinde, C., & White, P. (2019). Teaching across subject boundaries in STEM: Continuities in beliefs about learning and teaching. International Journal of Science and Mathematics Education, 18(3), 463–483. https://doi.org/10.1007/s10763-019-09983-2
  • Wolfson, A. J., Rowland, S. L., Lawrie, G. A., & Wright, A. H. (2014). Student conceptions about energy transformations: Progression from general chemistry to biochemistry. Chemistry Education Research and Practice, 15(2), 168–183. https://doi.org/10.1039/C3RP00132F
  • Wu, J.-Y., & Tsai, C.-C. (2022). Harnessing the power of promising technologies to transform science education: Prospects and challenges to promote adaptive epistemic beliefs in science learning. International Journal of Science Education, 44(2), 346–353. https://doi.org/10.1080/09500693.2022.2028927
  • Yeatts, F. R., & Hundhausen, J. R. (1992). Calculus and physics: Challenges at the interface. American Journal of Physics, 60(8), 716–721. https://doi.org/10.1119/1.17077

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.