509
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assembly required: a microgenetic multiple case study of four students’ assemblages when learning about force

ORCID Icon, ORCID Icon & ORCID Icon
Received 04 Nov 2022, Accepted 08 Oct 2023, Published online: 16 Nov 2023

References

  • Adolph, K. E., Robinson, S. R., Young, J. W., & Gill-Alvarez, F. (2008). What is the shape of developmental change? Psychological Review, 115(3), 527–543. https://doi.org/10.1037/0033-295X.115.3.527
  • Ausubel, D. (2000). The acquisition and retention of knowledge. Kluwer Academic Publishers.
  • Baddeley, A. D. (1997). Human memory. Psychology Press.
  • Barsalou, L. W. (1983). Ad hoc categories. Memory & Cognition, 11(3), 211–227. https://doi.org/10.3758/BF03196968
  • Barsalou, L. W. (1987). The instability of graded structure: Implications for the nature. In U. Neisser (Ed.), Concepts and conceptual development: Ecological and intellectual factors in categorization (pp. 101–140). Cambridge University Press.
  • Barsalou, L. W. (2005). Situated conceptualization. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (pp. 619–650). Elsevier.
  • Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge University Press.
  • Becker, M., Cabeza, R., & Kizilirmak, J. M. (2024). A cognitive neuroscience perspective on insight as a memory process: Searching for the solution. In L. J. Ball, & F. Vallee-Tourangeau (Eds.), The Routledge international handbook of creative cognition (pp. 491–510). Routledge.
  • Bilalić, M., McLeod, P., & Gobet, F. (2008). Inflexibility of experts—reality or myth? Quantifying the Einstellung effect in chess masters. Cognitive Psychology, 56(2), 73–102. https://doi.org/10.1016/j.cogpsych.2007.02.001
  • Blown, E. J., & Bryce, T. G. K. (2006). Knowledge restructuring in the development of children’s cosmologies. International Journal of Science Education, 28(12), 1411–1462. https://doi.org/10.1080/09500690600718062
  • Bransford, J., Brown, L. A., & Cocking, R. (2000). How people learn: Brain, mind, experience, and school. National Academies Press.
  • Brock, R. (2017). Making sense of making sense: A microgenetic multiple case study of five students’ developing conceptual compounds related to physics [Doctoral thesis, University of Cambridge]. https://doi.org/10.17863/CAM.13788
  • Brock, R. (2018). Knowing is only the first step: Strategies to support the development of scientific understanding. School Science Review, 99(369), 116–121.
  • Brock, R., & Taber, K. S. (2017). The application of the microgenetic method to studies of learning in science education: Characteristics of published studies, methodological issues and recommendations for future research. Studies in Science Education, 53(1), 45–73. https://doi.org/10.1080/03057267.2016.1262046
  • Carston, R. (2002). Thoughts and utterances. Blackwell.
  • Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55–81. https://doi.org/10.1016/0010-0285(73)90004-2
  • Clement, J. (2013). The role of explanatory models in teaching for conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 417–452). Routledge.
  • Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry. Theory Into Practice, 39(3), 124–130. https://doi.org/10.1207/s15430421tip3903_2
  • Deleuze, G., & Guattari, F. (2013). A thousand plateaus: Capitalism and schizophrenia. Routledge.
  • Demastes, S. S., Good, R. G., & Peebles, P. (1996). Patterns of conceptual change in evolution. Journal of Research in Science Teaching, 33(4), 407–431. https://doi.org/10.1002/(SICI)1098-2736(199604)33:4<407::AID-TEA4>3.0.CO;2-W
  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2–3), 105–225. https://doi.org/10.1080/07370008.1985.9649008
  • diSessa, A. A. (2002). Why ‘conceptual ecology’ is a good idea. In M. Limon, & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 29–60). Kluwer.
  • diSessa, A. A. (2014). The construction of causal schemes: Learning mechanisms at the knowledge level. Cognitive Science, 38(5), 795–850. https://doi.org/10.1111/cogs.12131
  • diSessa, A. A. (2017). Conceptual change in a microcosm: Comparative learning analysis of a learning event. Human Development, 60(1), 1–37. https://doi.org/10.1159/000469693
  • diSessa, A. A., & Sherin, B. L. (1998). What changes in conceptual change? International Journal of Science Education, 20(10), 1155–1191. https://doi.org/10.1080/0950069980201002
  • Dykstra, D. I., Boyle, C. F., & Monarch, I. A. (1992). Studying conceptual change in learning physics. Science Education, 76(6), 615–652. https://doi.org/10.1002/sce.3730760605
  • Epstein, L. C. (2009). Thinking physics. Insight Press.
  • Flyvbjerg, B. (2006). Five misunderstandings about case-study research. Qualitative Inquiry, 12(2), 219–245. https://doi.org/10.1177/1077800405284363
  • Frankenberg, C., Knebel, M., Degen, C., Siebert, J. S., Wahl, H.-W., & Schröder, J. (2022). Autobiographical memory in healthy aging: A decade-long longitudinal study. Aging, Neuropsychology, and Cognition, 29(1), 158–179. https://doi.org/10.1080/13825585.2020.1859082
  • Gelman, S. (2003). The essential child: Origins of essentialism in everyday thought. Oxford University Press.
  • Georghiades, P. (2000). Beyond conceptual change learning in science education: Focusing on transfer, durability and metacognition. Educational Research, 42(2), 119–139. https://doi.org/10.1080/001318800363773
  • Guba, E. G. (1981). Criteria for assessing the trustworthiness of naturalistic inquiries. Educational Communication and Technology Journal, 29(2), 75–91. https://doi.org/10.1007/BF02766777
  • Hammer, D. (2000). Student resources for learning introductory physics. American Journal of Physics, 68(7), S52–S59. https://doi.org/10.1119/1.19520
  • Hammer, D., & Elby, A. (2003). Tapping epistemological resources for learning physics. Journal of the Learning Sciences, 12(1), 53–90. https://doi.org/10.1207/S15327809JLS1201_3
  • Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. Maestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89–120). Information Age Publishing.
  • Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30(3), 141–158.
  • Hoffman, A. B., & Rehder, B. (2010). The costs of supervised classification: The effect of learning task on conceptual flexibility. Journal of Experimental Psychology: General, 139(2), 319–340. https://doi.org/10.1037/a0019042
  • Koponen, I. T. (2014). Systemic view of learning scientific concepts: A description in terms of directed graph model. Complexity, 19(3), 27–37. https://doi.org/10.1002/cplx.21474
  • Koponen, I. T., & Huttunen, L. (2013). Concept development in learning physics: The case of electric current and voltage revisited. Science & Education, 22(9), 2227–2254. https://doi.org/10.1007/s11191-012-9508-y
  • Koponen, I. T., & Kokkonen, T. (2014). A systemic view of the learning and differentiation of scientific concepts: The case of electric current and voltage revisited. Frontline Learning Research, 2(3), 140–166.
  • Kosso, P. (2002). The omniscienter: Beauty and scientific understanding. International Studies in the Philosophy of Science, 16(1), 39–48. https://doi.org/10.1080/02698590120118819
  • Lakoff, G. (1987). Women, fire, and dangerous things. University of Chicago Press.
  • Levering, K. R., & Kurtz, K. J. (2019). Concepts: Structure and acquisition. In R. J. Sternberg & J. Funke (Eds.), The psychology of human thought (pp. 55–70). Heidelberg University Publishing. https://doi.org/10.17885/HEIUP.470.C6667
  • Mazzone, M., & Lalumera, E. (2010). Concepts: Stored or created? Minds and Machines, 20(1), 47–68. https://doi.org/10.1007/s11023-010-9184-0
  • Medin, D. L., & Rips, L. J. (2005). Concepts and categories: Memory, meaning, and metaphysics. In K. J. Holyoak, & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 37–72). Cambridge University Press.
  • Murphy, G. L. (2002). The big book of concepts. MIT Press.
  • Nail, T. (2017). What is an assemblage? SubStance, 46, 21–37.
  • Novak, J. D. (1966). The role of concepts in science teaching. In H. J. Klausmeier & C. W. Harris (Eds.), Analyses of concept learning (pp. 239–254). Academic Press. https://doi.org/10.1016/B978-1-4832-3127-3.50020-1
  • Parnafes, O. (2012). Developing explanations and developing understanding: Students explain the phases of the moon using visual representations. Cognition and Instruction, 30(4), 359–403. https://doi.org/10.1080/07370008.2012.716885
  • Parnafes, O., & diSessa, A. A. (2013). Microgenetic learning analysis: A methodology for studying knowledge in transition. Human Development, 56(1), 5–37. https://doi.org/10.1159/000342945
  • Piaget, J. (1929). The child’s conception of the world (J. Tomlinson & A. Tomlinson, trans). Routledge & Kegan Paul.
  • Potvin, P., & Cyr, G. (2017). Toward a durable prevalence of scientific conceptions: Tracking the effects of two interfering misconceptions about buoyancy from preschoolers to science teachers. Journal of Research in Science Teaching, 54(9), 1121–1142. https://doi.org/10.1002/tea.21396
  • Reif, F. (2008). Applying cognitive science to education. The MIT Press.
  • Sabella, M. S., & Redish, E. F. (2007). Knowledge organization and activation in physics problem solving. American Journal of Physics, 75(11), 1017–1029. https://doi.org/10.1119/1.2746359
  • Shavelson, R. J. (1972). Some aspects of the correspondence between content structure and cognitive structure in physics instruction. Journal of Educational Psychology, 63(3), 225–234. https://doi.org/10.1037/h0032652
  • Sherin, B. (2021). Where are we? Syntheses and synergies in science education research and practice. In O. Levrini , G. Tasquier, T. G. Amin, L. Branchetti, & M. Levin (Eds.), Contributions from science education research (pp. 211–224). Springer Science and Business Media B.V. https://doi.org/10.1007/978-3-030-74490-8_17
  • Sherin, B. L. (2013). A computational study of commonsense science: An exploration in the automated analysis of clinical interview data. Journal of the Learning Sciences, 22(4), 600–638. https://doi.org/10.1080/10508406.2013.836654
  • Sherin, B. L., Krakowski, M., & Lee, V. R. (2012). Some assembly required: How scientific explanations are constructed during clinical interviews. Journal of Research in Science Teaching, 49(2), 166–198. https://doi.org/10.1002/tea.20455
  • Shuell, T. J. (1990). Phases of meaningful learning. Review of Educational Research, 60(4), 531–547. https://doi.org/10.3102/00346543060004531
  • Siegler, R. S. (2006). Microgenetic analyses of learning. In D. Kuhn, & R. S. Siegler (Eds.), Handbook of child psychology. Volume 2. Cognition, perception, and language (pp. 464–510). Wiley.
  • Siegler, R. S., & Chen, Z. (1998). Developmental differences in rule learning: A microgenetic analysis. Cognitive Psychology, 36(3), 273–310. https://doi.org/10.1006/cogp.1998.0686
  • Siegler, R. S., & Crowley, K. (1991). The microgenetic method: A direct means for studying cognitive development. American Psychologist, 46(6), 606–620. https://doi.org/10.1037/0003-066X.46.6.606
  • Simon, H. A., & Chase, W. G. (1988). Skill in chess. American Scientist, 61(4), 175–188. https://doi.org/10.1007/978-1-4757-1968-0_18
  • Sliwinski, M. J. (2011). Approaches to modeling intraindividual and interindividual facets of change for developmental research. In K. L. Fingerman, C. A. Berg, J. Smith, & T. C. Antonucci (Eds.), Handbook of life-span development (pp. 1–25). Springer.
  • Sloman, S. (2009). Causal models: How people think about the world and its alternatives. Oxford University Press.
  • Sloutsky, V. M., & Deng, W(. (2019). Categories, concepts, and conceptual development. Language, Cognition and Neuroscience, 34(10), 1284–1297. https://doi.org/10.1080/23273798.2017.1391398
  • Smith, L. B. (2005). Cognition as a dynamic system: Principles from embodiment. Developmental Review, 25(3), 278–298. https://doi.org/10.1016/j.dr.2005.11.001
  • Spivey, M., & Cargill, S. (2007). Toward a continuity of consciousness. Journal of Consciousness Studies, 14(1–2), 216–233.
  • Taber, K. S. (1995). Development of student understanding: A case study of stability and lability in cognitive structure. Research in Science & Technological Education, 13(1), 89–99. https://doi.org/10.1080/0263514950130108
  • Taber, K. S. (2000). Case studies and generalizability: Grounded theory and research in science education. International Journal of Science Education, 22(5), 469–487. https://doi.org/10.1080/095006900289732
  • Taber, K. S. (2008). Conceptual resources for learning science: Issues of transience and grain-size in cognition and cognitive structure. International Journal of Science Education, 30(8), 1027–1053. https://doi.org/10.1080/09500690701485082
  • Taber, K. S. (2009). Progressing science education: Constructing the scientific research programme into the contingent nature of learning science. Springer.
  • Taber, K. S. (2013). Modelling learners and learning in science education: Developing representations of concepts, conceptual structure and conceptual change to inform teaching and research. Springer.
  • Tao, P. K., & Gunstone, R. F. (1999). The process of conceptual change in force and motion during computer-supported physics instruction. Journal of Research in Science Teaching, 36(7), 859–882. https://doi.org/10.1002/(SICI)1098-2736(199909)36:7<859::AID-TEA7>3.0.CO;2-J
  • White, R. T., & Gunstone, R. F. (1992). Probing understanding. Falmer Press.
  • Wing, E. A., Burles, F., Ryan, J. D., & Gilboa, A. (2022). The structure of prior knowledge enhances memory in experts by reducing interference. Proceedings of the National Academy of Sciences, 119(26), Article e2204172119. https://doi.org/10.1073/pnas.2204172119
  • Wittmann, M. C. (2002). The object coordination class applied to wave pulses: Analysing student reasoning in wave physics. International Journal of Science Education, 24(1), 97–118. https://doi.org/10.1080/09500690110066944
  • Yin, R. K. (2009). Case study research: Design and methods. Sage Publications Incorporated.