2,676
Views
28
CrossRef citations to date
0
Altmetric
Articles

Anti-inflammatory effects of the protein hydrolysate and peptide fractions isolated from Salvia hispanica L. seeds

ORCID Icon, , &
Pages 786-803 | Received 08 May 2019, Accepted 10 Jun 2019, Published online: 23 Jun 2019

References

  • Arana-Argáez, V. E., Chan-Zapata, I., Canul-Canche, J., Fernández-Martín, K., Martín-Quintal, Z., Torres-Romero, J. C., … Ramírez-Camacho, M. A. (2017). Immunosuppresive effects of the methanolic extract of Chrysophyllum cainito leaves on macrophage functions. African Journal of Traditional, Complementary and Alternative Medicines, 14(1), 179–186.
  • Arango Duque, G., & Descoteaux, A. (2014). Macrophage cytokines: Involvement in immunity and infectious diseases. Frontiers in Immunology, 5(491), 1–12.
  • Benítez, R., Ibarz, A., & Pagan, J. (2008). Hidrolizados de proteína: procesos y aplicaciones. Acta Bioquímica Clínica Latinoamericana, 42(2), 227–236.
  • Bralley, E. E., Greenspan, P., Hargrove, J. L., Wicker, L., & Hartle, D. K. (2008). Topical anti-inflammatory activity of Polygonum cuspidatum extract in the TPA model of mouse ear inflammation. Journal of Inflammation, 5(1), 1–7. doi: 10.1186/1476-9255-5-1
  • Chim-Chi, Y., Gallegos-Tintoré, S., Jiménez-Martínez, C., Dávila-Ortiz, G., & Chel-Guerrero, L. (2018). Antioxidant capacity of Mexican chia (Salvia hispanica L.) protein hydrolyzates. Journal of Food Measurement and Characterization, 12(1), 323–331. doi: 10.1007/s11694-017-9644-9
  • Christensen, A. D., & Haase, C. (2012). Immunological mechanisms of contact hypersensitivity in mice. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 120(1), 1–27. doi: 10.1111/j.1600-0463.2011.02832
  • Cunniff, P. (1997). Official methods of analysis of AOAC international. Gaithersburg, MD: AOAC International.
  • Debnath, T., Kim, E. K., Nath, N. C. D., & Lee, K. G. (2017). Therapeutic effects of Ligularia stenocephala against inflammatory bowel disease by regulating antioxidant and inflammatory mediators. Food and Agricultural Immunology, 28(6), 1142–1154. doi: 10.1080/09540105.2017.1332008
  • De Carvalho-Silva, L. B., Bertoldo Pacheco, M. T., Bertoldo, R., De Carvalho Veloso, C., Costa Teodoro, L., Giusti-Paiva, A., … Soncini, R. (2012). Anti-inflammatory activities of enzymatic (alcalase) hydrolysate of a whey protein concentrate. African Journal of Biotechnology, 11(12), 2993–2999.
  • Doyon, M., & Labrecque, J. (2008). Functional foods: A conceptual definition. British Food Journal, 110(11), 1133–1149. doi: 10.1108/00070700810918036
  • Fu, R., Zhang, Y., Peng, T., Guo, Y., & Chen, F. (2015). Phenolic composition and effects on allergic contact dermatitis of phenolic extracts Sapium sebiferum (L.) Roxb. leaves. Journal of Ethnopharmacology, 162, 176–180. doi: 10.1016/j.jep.2014.12.072
  • Gautam, R., & Jachak, S. M. (2009). Recent developments in anti-inflammatory natural products. Medicinal Research Reviews, 29(5), 767–820. doi: 10.1002/med.20156
  • Gómez, M., & Gil, J. F. (2011). Topical anti-inflammatory activity of Calea prunifolia HBK (Asteraceae) in the TPA model of mouse ear inflammation. Journal of the Brazilian Chemical Society, 22(12), 2391–2395. doi: 10.1590/S0103-50532011001200021
  • Herrera Chalé, F. G., Ruiz Ruiz, J. C., Acevedo Fernández, J. J., Betancur Ancona, D. A., & Segura Campos, M. R. (2014). ACE inhibitory, hypotensive and antioxidant peptide fractions from Mucuna pruriens proteins. Process Biochemistry, 49(10), 1691–1698. doi: 10.1016/j.procbio.2014.06.021
  • Honda, T., Egawa, G., Grabbe, S., & Kabashima, K. (2013). Update of immune events in the murine contact hypersensitivity model: Toward the understanding of allergic contact dermatitis. Journal of Investigative Dermatology, 133(2), 303–315. doi: 10.1038/jid.2012.284
  • Ixtaina, V. Y., Nolasco, S. M., & Tomás, M. C. (2008). Physical properties of chia (Salvia hispanica L.) seeds. Industrial Crops and Products, 28(3), 286–293. doi: 10.1016/j.indcrop.2008.03.009
  • Joshi, I., Sudhakar, S., & Nazeer, R. A. (2016). Anti-inflammatory properties of bioactive peptide derived from gastropod influenced by enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 180(6), 1128–1140. doi: 10.1007/s12010-016-2156-y
  • Kim, Y. S., Young, M. R., Bobe, G., Colburn, N. H., & Milner, J. A. (2009). Bioactive food components, inflammatory targets, and cancer prevention. Cancer Prevention Research, 2(3), 200–208. doi: 10.1158/1940-6207.CAPR-08-0141
  • Kobayashi, K., Kaneda, K., & Kasama, T. (2001). Immunopathogenesis of delayed-type hypersensitivity. Microscopy Research and Technique, 53(4), 241–245. doi: 10.1002/jemt.1090
  • Laviada-Castillo, R. E., Segura-Campos, M. R., Chan-Zapata, I., Torres-Romero, J. C., Guillermo-Cordero, J. L., & Arana-Argáez, V. E. (2019). Immunosuppressive effects of protein derivatives from Mucuna pruriens on a streptozotocin-induced type 1 diabetes murine model. Journal of Food Biochemistry, 43(5), 1–10. doi: 10.1111/jfbc.12834
  • Lawrence, T., & Fong, C. (2010). The resolution of inflammation: Anti-inflammatory roles for NF-κB. The International Journal of Biochemistry & Cell Biology, 42(4), 519–523. doi: 10.1016/j.biocel.2009.12.016
  • Lugrin, J., Rosenblatt-Velin, N., Parapanov, R., & Liaudet, L. (2014). The role of oxidative stress during inflammatory processes. Biological Chemistry, 395(2), 203–230. doi: 10.1515/hsz-2013-0241
  • Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling, 20(7), 1126–1167. doi: 10.1089/ars.2012.5149
  • Nathan, C., & Ding, A. (2010). Nonresolving inflammation. Cell, 140(6), 871–882. doi: 10.1016/j.cell.2010.02.029
  • Ndiaye, F., Vuong, T., Duarte, J., Aluko, R. E., & Matar, C. (2012). Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds. European Journal of Nutrition, 51(1), 29–37. doi: 10.1007/s00394-011-0186-3
  • Okin, D., & Medzhitov, R. (2012). Evolution of inflammatory diseases. Current Biology, 22(17), R733–R740. doi: 10.1016/j.cub.2012.07.029
  • Orona-Tamayo, D., Valverde, M. E., Nieto-Rendón, B., & Paredes-López, O. (2015). Inhibitory activity of chia (Salvia hispanica L.) protein fractions against angiotensin I-converting enzyme and antioxidant capacity. LWT - Food Science and Technology, 64(1), 236–242. doi: 10.1016/j.lwt.2015.05.033
  • Rangaraju, A., & Kumar, U. M. (2013). A pharmacognostic study on Salvia hispanica. American Journal of Pharmacy & Health Research, 1(9), 27–37.
  • Segura Campos, M. R., Peralta González, F., Chel Guerrero, L., & Betancur Ancona, D. (2013). Angiotensin I-converting enzyme inhibitory peptides of chia (Salvia hispanica) produced by enzymatic hydrolysis. International Journal of Food Science, 2013, 1–8. doi: 10.1155/2013/158482
  • Segura-Campos, M. R., Salazar-Vega, I. M., Chel-Guerrero, L. A., & Betancur-Ancona, D. A. (2013). Biological potential of chia (Salvia hispanica L.) protein hydrolysates and their incorporation into functional foods. LWT - Food Science and Technology, 50(2), 723–731. doi: 10.1016/j.lwt.2012.07.017
  • Suleria, H. A. R., Addepalli, R., Masci, P., Gobe, G., & Osborne, S. A. (2017). In vitro anti-inflammatory activities of blacklip abalone (Haliotis rubra) in RAW 264.7 macrophages. Food and Agricultural Immunology, 28(4), 711–724. doi: 10.1080/09540105.2017.1310186
  • Tavares, T. G., Spindola, H., Longato, G., Pintado, M. E., Carvalho, J. E., & Malcata, F. X. (2013). Antinociceptive and anti-inflammatory effects of novel dietary protein hydrolysate produced from whey by proteases of Cynara cardunculus. International Dairy Journal, 32(2), 156–162. doi: 10.1016/j.idairyj.2013.05.010
  • Timilsena, Y. P., Adhikari, R., Barrow, C. J., & Adhikari, B. (2016). Physicochemical and functional properties of protein isolate produced from Australian chia seeds. Food Chemistry, 212(1), 648–656. doi: 10.1016/j.foodchem.2016.06.017
  • Toffoli-Kadri, M. C., Carollo, C. A., Días Lourenço, L., Felipe, J. L., Brandini Néspoli, J. H., Campos Wollf, L. G., … de Siqueira, J. M. (2014). In vivo and in vitro anti-inflammatory properties of Achyrocline alata (Kunth) DC. Journal of Ethnopharmacology, 153(2), 461–468. doi: 10.1016/j.jep.2014.03.008
  • Udenigwe, C. C., & Aluko, R. E. (2012). Food protein-derived bioactive peptides production, processing, and potential health benefits. Journal of Food Science, 71(1), 11–24. doi: 10.1111/j.1750-3841.2011.02455
  • Udenigwe, C. C., Je, J. Y., Cho, Y. S., & Yada, R. Y. (2013). Almond protein hydrolysate fraction modulates the expression of proinflammatory cytokines and enzymes in activated macrophages. Food & Function, 4, 777–783. doi: 10.1039/C3FO30327F
  • Udenigwe, C. C., Lu, Y. H., Han, C. H., Hou, W. C., & Aluko, R. E. (2009). Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chemistry, 116(1), 277–284. doi: 10.1016/j.foodchem.2009.02.046
  • Velnar, T., Bailey, T., & Smrkolj, V. (2009). The wound healing process: An overview of the cellular and molecular mechanisms. Journal of International Medical Research, 37(5), 1528–1542. doi: 10.1177/147323000903700531
  • Zhang, J. M., & An, J. (2007). Cytokines, inflammation and pain. International Anesthesiology Clinics, 45(2), 27–37. doi: 10.1097/AIA.0b013e318034194e