2,777
Views
0
CrossRef citations to date
0
Altmetric
Articles

Preparation of fermented oat milk and evaluation of its modulatory effect on antigen-specific immune responses in ovalbumin-sensitized mice

, & ORCID Icon
Pages 722-735 | Received 13 Aug 2022, Accepted 30 Aug 2022, Published online: 21 Sep 2022

References

  • Barker, T. (2019). Applied immunology and biochemistry. Scientific e-Resources.
  • Boyle, R., & Tang, M. (2006). The role of probiotics in the management of allergic disease. Clinical & Experimental Allergy, 36(5), 568–576. https://doi.org/10.1111/j.1365-2222.2006.02472.x
  • Brückner-Gühmann, M., Vasil’eva, E., Culetu, A., Duta, D., Sozer, N., & Drusch, S. (2019). Oat protein concentrate as alternative ingredient for non-dairy yoghurt-type product. Journal of the Science of Food and Agriculture, 99(13), 5852–5857. https://doi.org/10.1002/jsfa.9858
  • Chandan, R. C. (2006). History and consumption trends. Manufacturing Yogurt and Fermented Milks, 1(3.21), 5400. https://doi.org/10.1002/9780470277812
  • Chen, G.-W., Tsai, J.-S., & Pan, B. S. (2007). Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic fermentation. International Dairy Journal, 17(6), 641–647. https://doi.org/10.1016/j.idairyj.2006.07.004
  • Chen, H.-Y., Hsieh, C.-W., Chen, P.-C., Lin, S.-P., Lin, Y.-F., & Cheng, K.-C. (2021). Development and optimization of djulis sourdough bread fermented by lactic acid bacteria for antioxidant capacity. Molecules, 26(18), 5658. https://doi.org/10.3390/molecules26185658
  • Chen, O., Mah, E., Dioum, E., Marwaha, A., Shanmugam, S., Malleshi, N., Sudha, V., Gayathri, R., Unnikrishnan, R., Anjana, R. M., & Krishnaswamy, K. (2021). The role of oat nutrients in the immune system: A narrative review. Nutrients, 13(4), 1048. https://doi.org/10.3390/nu13041048
  • Coda, R., Lanera, A., Trani, A., Gobbetti, M., & Di Cagno, R. (2012). Yogurt-like beverages made of a mixture of cereals, soy and grape must: Microbiology, texture, nutritional and sensory properties. International Journal of Food Microbiology, 155(3), 120–127. https://doi.org/10.1016/j.ijfoodmicro.2012.01.016
  • Comino, I., Bernardo, D., Bancel, E., Moreno, M. D., Sánchez, B., Barro, F., Šuligoj, T., Ciclitira, P. J., Cebolla, Á, Knight, S. C., & Branlard, G. (2016). Identification and molecular characterization of oat peptides implicated on coeliac immune response. Food & Nutrition Research, 60(1), 30324. https://doi.org/10.3402/fnr.v60.30324
  • Comino, I., Real, A., de Lorenzo, L., Cornell, H., López-Casado, MÁ, Barro, F., Lorite, P., Torres, M. I., Cebolla, Á, & Sousa, C. (2011). Diversity in oat potential immunogenicity: Basis for the selection of oat varieties with no toxicity in coeliac disease. Gut, 60(7), 915–922. https://doi.org/10.1136/gut.2010.225268
  • Corbin, E., Vicente, J., Martin-Hernando, M., Acevedo, P., Perez-Rodriguez, L., & Gortazar, C. (2008). Spleen mass as a measure of immune strength in mammals. Mammal Review, 38(1), 108–115. https://doi.org/10.1111/j.1365-2907.2007.00112.x
  • Dargahi, N., Johnson, J. C., & Apostolopoulos, V. (2021). Immune modulatory effects of probiotic Streptococcus thermophilus on human monocytes. Biologics, 1(3), 396–415. https://doi.org/10.3390/biologics1030023
  • De Simone, C., Salvadori, B. B., Negri, R., Ferrazzi, M., Baldinelli, L., & Vesely, R. (1986). The adjuvant effect of yogurt on production of gamma-interferon by con A-stimulated human peripheral blood lymphocytes. Nutrition Reports International (USA).
  • Dimitrijevic, R., Ivanovic, N., Mathiesen, G., Petrusic, V., Zivkovic, I., Djordjevic, B., & Dimitrijevic, L. (2014). Effects of Lactobacillus rhamnosus LA68 on the immune system of C57BL/6 mice upon oral administration. Journal of Dairy Research, 81(2), 202–207. https://doi.org/10.1017/S0022029914000028
  • Elmadfa, I., Klein, P., & Meyer, A. L. (2010). Immune-stimulating effects of lactic acid bacteria in vivo and in vitro. Proceedings of the Nutrition Society, 69(3), 416–420. https://doi.org/10.1017/S0029665110001710
  • Fong, F. L. Y., Kirjavainen, P. V., & El-Nezami, H. (2016). Immunomodulation of Lactobacillus rhamnosus GG (LGG)-derived soluble factors on antigen-presenting cells of healthy blood donors. Scientific Reports, 6(1), 1–8. https://doi.org/10.1038/s41598-016-0001-8
  • Gao, D., Liu, Z., Liu, F., Chen, L., Wang, W., Ma, J., Xu, C., Jiang, Z., & Hou, J. (2021). Study of the immunoregulatory effect of Lactobacillus rhamnosus 1.0320 in immunosuppressed mice. Journal of Functional Foods, 79(12), 104423. https://doi.org/10.1016/j.jff.2021.104423
  • Halpern, G., Vruwink, K., Van de Water, J. A., Keen, C. L., & Gershwin, M. E. (1991). Influence of long-term yoghurt consumption in young adults. International Journal of Immunotherapy, 7(4), 205–210.
  • Iddir, M., Brito, A., Dingeo, G., Fernandez Del Campo, S. S., Samouda, H., La Frano, M. R., & Bohn, T. (2020). Strengthening the immune system and reducing inflammation and oxidative stress through diet and nutrition: Considerations during the COVID-19 crisis. Nutrients, 12(6), 1562. https://doi.org/10.3390/nu12061562
  • Jäger, A., & Kuchroo, V. K. (2010). Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scandinavian Journal of Immunology, 72(3), 173–184. https://doi.org/10.1111/j.1365-3083.2010.02432.x
  • Kamiya, T., Watanabe, Y., Makino, S., Kano, H., & Tsuji, N. M. (2016). Improvement of intestinal immune cell function by lactic acid bacteria for dairy products. Microorganisms, 5(1), 1. https://doi.org/10.3390/microorganisms5010001
  • Karimi, K., Kandiah, N., Chau, J., Bienenstock, J., & Forsythe, P. (2012). A Lactobacillus rhamnosus strain induces a heme oxygenase dependent increase in Foxp3+ regulatory T cells.
  • Liu, H., Wang, J., He, T., Becker, S., Zhang, G., Li, D., & Ma, X. (2018). Butyrate: A double-edged sword for health? Advances in Nutrition, 9(1), 21–29. https://doi.org/10.1093/advances/nmx009
  • Lowry, O. H. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Luca, L., & Oroian, M. (2022). Oat Yogurts enriched with synbiotic microcapsules: Physicochemical, microbiological, textural and rheological properties during storage. Foods, 11(7), 940. https://doi.org/10.3390/foods11070940
  • Ludwig, I. S., Broere, F., Manurung, S., Lambers, T. T., Van der Zee, R., & Van Eden, W. (2018). Lactobacillus rhamnosus GG-derived soluble mediators modulate adaptive immune cells. Frontiers in Immunology, 9, 1546. https://doi.org/10.3389/fimmu.2018.01546
  • Makino, S., Ikegami, S., Kano, H., Sashihara, T., Sugano, H., Horiuchi, H., Saito, T., & Oda, M. (2006). Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Journal of Dairy Science, 89(8), 2873–2881. https://doi.org/10.3168/jds.S0022-0302(06)72560-7
  • Menon, R., Gonzalez, T., Ferruzzi, M., Jackson, E., Winderl, D., & Watson, J. (2016). Oats – from farm to fork. Advances in Food and Nutrition Research, 77, 1–55. https://doi.org/10.1016/bs.afnr.2015.12.001
  • Meydani, S. N., & Ha, W.-K. (2000). Immunologic effects of yogurt. The American Journal of Clinical Nutrition, 71(4), 861–872. https://doi.org/10.1093/ajcn/71.4.861
  • Mindus, C., van Staaveren, N., Fuchs, D., Gostner, J. M., Kjaer, J. B., Kunze, W., Mian, M. F., Shoveller, A. K., Forsythe, P., & Harlander-Matauschek, A. (2021). L. rhamnosus improves the immune response and tryptophan catabolism in laying hen pullets. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-020-79139-8
  • Muscettola, M., Massai, L., Tanganelli, C., & Grasso, G. (1994). Effects of Lactobacilli on interferon production in young and aged mice a. Annals of the New York Academy of Sciences, 717(1), 226–232. https://doi.org/10.1111/j.1749-6632.1994.tb12092.x
  • Nazimek, K., & Bryniarski, K. (2020). Approaches to inducing antigen-specific immune tolerance in allergy and autoimmunity: Focus on antigen-presenting cells and extracellular vesicles. Scandinavian Journal of Immunology, 91(6), e12881. https://doi.org/10.1111/sji.12881
  • Neuhouser, M. L., Schwarz, Y., Wang, C., Breymeyer, K., Coronado, G., Wang, C. Y., Noar, K., Song, X., & Lampe, J. W. (2012). A low-glycemic load diet reduces serum C-reactive protein and modestly increases adiponectin in overweight and obese adults. The Journal of Nutrition, 142(2), 369–374. https://doi.org/10.3945/jn.111.149807
  • O’Connor, C. (1995). Rural dairy technology (Vol. 1). ILRI (aka ILCA and ILRAD).
  • Pan, W., Hao, S., Zheng, M., Lin, D., Jiang, P., Zhao, J., Shi, H., Yang, X., Li, X., & Yu, Y. (2020). Oat-derived β-glucans induced trained immunity through metabolic reprogramming. Inflammation, 43(4), 1323–1336. https://doi.org/10.1007/s10753-020-01211-2
  • Puri, P., Rattan, A., Bijlani, R., Mahapatra, S., & Nath, I. (1996). Splenic and intestinal lymphocyte proliferation response in mice fed milk or yogurt and challenged with Salmonella typhimurium. International Journal of Food Sciences and Nutrition, 47(5), 391–398. https://doi.org/10.3109/09637489609006952
  • Raikos, V., Juskaite, L., Vas, F., & Hayes, H. E. (2020). Physicochemical properties, texture, and probiotic survivability of oat-based yogurt using aquafaba as a gelling agent. Food Science & Nutrition, 8(12), 6426–6432. https://doi.org/10.1002/fsn3.1932
  • Ranadheera, C. S., Vidanarachchi, J. K., Rocha, R. S., Cruz, A. G., & Ajlouni, S. (2017). Probiotic delivery through fermentation: Dairy vs. non-dairy beverages. Fermentation, 3(4), 67. https://doi.org/10.3390/fermentation3040067
  • Shamji, M. H., Valenta, R., Jardetzky, T., Verhasselt, V., Durham, S. R., Würtzen, P. A., & van Neerven, R. J. (2021). The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy, 76(12), 3627–3641. https://doi.org/10.1111/all.14908
  • Shonyela, S. M., Feng, B., Yang, W., Yang, G., & Wang, C. (2020). The regulatory effect of Lactobacillus rhamnosus GG on T lymphocyte and the development of intestinal villi in piglets of different periods. Amb Express, 10(1), 1–11. https://doi.org/10.1186/s13568-020-00980-1
  • Silanikove, N., Leitner, G., & Merin, U. (2015). The interrelationships between lactose intolerance and the modern dairy industry: Global perspectives in evolutional and historical backgrounds. Nutrients, 7(9), 7312–7331. https://doi.org/10.3390/nu7095340
  • Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N. (2019). Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, 11(7), 1591. https://doi.org/10.3390/nu11071591
  • Villena, J., Chiba, E., Tomosada, Y., Salva, S., Marranzino, G., Kitazawa, H., & Alvarez, S. (2012). Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly (I: C). BMC Immunology, 13(1), 1–15. https://doi.org/10.1186/1471-2172-13-53
  • Wei, Y. J., Fang, R. E., Ou, J. Y., Pan, C. L., & Huang, C. H. (2022). Modulatory effects of Porphyra-derived polysaccharides, oligosaccharides and their mixture on antigen-specific immune responses in ovalbumin-sensitized mice. Journal of Functional Foods, 96(1-2), 105209. https://doi.org/10.1016/j.jff.2022.105209
  • Wen, K., Tin, C., Wang, H., Yang, X., Li, G., Giri-Rachman, E., Kocher, J., Bui, T., Clark-Deener, S., & Yuan, L. (2014). Probiotic Lactobacillus rhamnosus GG enhanced Th1 cellular immunity but did not affect antibody responses in a human gut microbiota transplanted neonatal gnotobiotic pig model. PLoS One, 9(4), e94504. https://doi.org/10.1371/journal.pone.0094504
  • Yang, H., Sun, Y., Cai, R., Chen, Y., & Gu, B. (2020). The impact of dietary fiber and probiotics in infectious diseases. Microbial Pathogenesis, 140(8), 103931. https://doi.org/10.1016/j.micpath.2019.103931
  • Yang, R., Wang, C., Ye, H., Gao, F., Cheng, J., Zhang, T., & Guo, M. (2019). Effects of feeding hyperlipidemia rats with symbiotic oat-based frozen yogurt on serum triglycerides and cholesterol. Food Science & Nutrition, 7(3), 1096–1103. https://doi.org/10.1002/fsn3.949
  • Zhu, Y., Shao, Y., Qu, X., Guo, J., Yang, J., Zhou, Z., & Wang, S. (2019). Sodium ferulate protects against influenza virus infection by activation of the TLR7/9-MyD88-IRF7 signaling pathway and inhibition of the NF-κB signaling pathway. Biochemical and Biophysical Research Communications, 512(4), 793–798. https://doi.org/10.1016/j.bbrc.2019.03.113