717
Views
23
CrossRef citations to date
0
Altmetric
Countermeasures

Modeling radiation-induced lung injury: lessons learned from whole thorax irradiation

ORCID Icon, , ORCID Icon &
Pages 129-144 | Received 26 Jul 2018, Accepted 13 Sep 2018, Published online: 25 Oct 2018

References

  • Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, Lee LB, McMahon G, Grone HJ, Lipson KE. 2005. Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med. 201:925–935.
  • Almeida C, Nagarajan D, Tian J, Leal SW, Wheeler K, Munley M, Blackstock W, Zhao W. 2013. The role of alveolar epithelium in radiation-induced lung injury. PLoS One. 8(1):e53628.
  • Ao X, Zhao L, Davis MA, Lubman DM, Lawrence TS, Kong FM. 2009. Radiation produces differential changes in cytokine profiles in radiation lung fibrosis sensitive and resistant mice. J Hematol Oncol. 2:6.
  • Aoshiba K, Tsuji T, Kameyama S, Itoh M, Semba S, Yamaguchi K, Nakamura H. 2013. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp Toxicol Pathol. 65:1053–1062.
  • Azzam EI, Jay-Gerin JP, Pain D. 2012. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 327:48–60.
  • Barnes JL, Gorin Y. 2011. Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int. 79:944–956.
  • Baselet B, Belmans N, Coninx E, Lowe D, Janssen A, Michaux A, Tabury K, Raj K, Quintens R, Benotmane MA. 2017. Functional gene analysis reveals cell cycle changes and inflammation in endothelial cells irradiated with a single x-ray dose. Front Pharmacol. 8:213.
  • Beach TA, Johnston CJ, Groves AM, Williams JP, Finkelstein JN. 2017. Radiation induced pulmonary fibrosis as a model of progressive fibrosis: contributions of DNA damage, inflammatory response and cellular senescence genes. Exp Lung Res. 43:134–149.
  • Beach TA, Groves AM, Johnston CJ, Williams JP, Finkelstein JN. 2018. Recurrent DNA damage indicates persistent injury in progressive, radiation induced pulmonary fibrosis. Int J Radiat Biol. doi:10.1080/09553002.2018.1516907
  • Bickelhaupt S, Erbel C, Timke C, Wirkner U, Dadrich M, Flechsig P, Tietz A, Pfohler J, Gross W, Peschke P. 2017. Effects of ctgf blockade on attenuation and reversal of radiation-induced pulmonary fibrosis. J Natl Cancer Inst. 109. doi:10.1093/jnci/djw339
  • Blackford AN, Jackson SP. 2017. Atm, atr, and DNA-pk: the trinity at the heart of the DNA damage response. Mol Cell. 66:801–817.
  • Bozyk PD, Moore BB. 2011. Prostaglandin e2 and the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol. 45:445–452.
  • Campisi J. 2011. Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev. 21:107–112.
  • Campisi J, d'Adda di Fagagna F. 2007. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 8:729–740.
  • Chen C, Yang S, Zhang M, Zhang Z, Hong J, Han D, Ma J, Zhang SB, Okunieff P, Zhang L. 2016. Triptolide mitigates radiation-induced pulmonary fibrosis via inhibition of axis of alveolar macrophages-noxes-ros-myofibroblasts. Cancer Biol Ther. 17:381–389.
  • Cheresh P, Kim SJ, Tulasiram S, Kamp DW. 2013. Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta. 1832:1028–1040.
  • Chiang CS, Liu WC, Jung SM, Chen FH, Wu CR, McBride WH, Lee CC, Hong JH. 2005. Compartmental responses after thoracic irradiation of mice: strain differences. Int J Radiat Oncol Biol Phys. 62:862–871.
  • Chilosi M, Carloni A, Rossi A, Poletti V. 2013. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and copd/emphysema. Transl Res. 162:156–173.
  • Chung EJ, McKay-Corkum G, Chung S, White A, Scroggins BT, Mitchell JB, Mulligan-Kehoe MJ, Citrin D. 2016. Truncated plasminogen activator inhibitor-1 protein protects from pulmonary fibrosis mediated by irradiation in a murine model. Int J Radiat Oncol Biol Phys. 94:1163–1172.
  • Citrin DE, Prasanna PGS, Walker AJ, Freeman ML, Eke I, Barcellos-Hoff MH, Arankalayil MJ, Cohen EP, Wilkins RC, Ahmed MM, et al. 2017. Radiation-induced fibrosis: mechanisms and opportunities to mitigate. Report of an nci workshop, september 19, 2016. Radiat Res. 188:1–20.
  • Citrin DE, Shankavaram U, Horton JA, Shield W, 3rd, Zhao S, Asano H, White A, Sowers A, Thetford A, Chung EJ. 2013. Role of type ii pneumocyte senescence in radiation-induced lung fibrosis. J Natl Cancer Inst. 105:1474–1484.
  • Coggle JE, Lambert BE, Moores SR. 1986. Radiation effects in the lung. Environ Health Perspect. 70:261–291.
  • Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. 2008. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic ras and the p53 tumor suppressor. PLoS Biol. 6:2853–2868.
  • Dabjan MB, Buck CM, Jackson IL, Vujaskovic Z, Marples B, Down JD. 2016. A survey of changing trends in modelling radiation lung injury in mice: bringing out the good, the bad, and the uncertain. Lab Invest. 96:936–949.
  • Dadrich M, Nicolay NH, Flechsig P, Bickelhaupt S, Hoeltgen L, Roeder F, Hauser K, Tietz A, Jenne J, Lopez R, et al. 2016. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis. Oncoimmunology. 5:e1123366.
  • de Leve S, Wirsdörfer F, Cappuccini F, Schütze A, Meyer AV, Röck K, Thompson LF, Fischer JW, Stuschke M, Jendrossek V. 2017. Loss of cd73 prevents accumulation of alternatively activated macrophages and the formation of prefibrotic macrophage clusters in irradiated lungs. Faseb J. 31:2869–2880.
  • Ding N-H, Li JJ, Sun L-Q. 2013. Molecular mechanisms and treatment of radiation-induced lung fibrosis. Curr Drug Targets. 14:1347–1346.
  • Down J, Steel G. 1983. The expression of early and late damage after thoracic irradiation: a comparison between cba and C57B1 mice. Radiat Res. 96:603.
  • Emami B, Lyman J, Brown A, Cola L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M. 1991. Tolerance of normal tissue to therepeutic irradiation. Inr J Radiation Oncology Bio Phys. 21:109–122.
  • Epperly MW, Sikora CA, DeFilippi SJ, Gretton JE, Bar-Sagi D, Archer H, Carlos T, Guo H, Greenberger JS. 2002. Pulmonary irradiation-induced expression of VCAM-I and ICAM-I is decreased by manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) gene therapy. Biol Blood Marrow Transplant. 8:175–187.
  • Fajardo L, Berthronf M, Anderson R. 2001. Radiation pathology. New York: Oxford University Press.
  • Farin AM, Manzo ND, Kirsch DG, Stripp BR. 2015. Low- and high-let radiation drives clonal expansion of lung progenitor cells in vivo. Radiat Res. 183:124–132.
  • Fleckenstein K, Zgonjanin L, Chen L, Rabbani Z, Jackson IL, Thrasher B, Kirkpatrick J, Foster WM, Vujaskovic Z. 2007. Temporal onset of hypoxia and oxidative stress after pulmonary irradiation. Int J Radiat Oncol Biol Phys. 68:196–204.
  • Flockerzi E, Schanz S, Rube CE. 2014. Even low doses of radiation lead to DNA damage accumulation in lung tissue according to the genetically-defined DNA repair capacity. Radiother Oncol. 111:212–218.
  • Freund A, Orjalo AV, Desprez PY, Campisi J. 2010. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 16:238–246.
  • Garofalo M, Bennett A, Farese AM, Harper J, Ward A, Taylor-Howell C, Cui W, Gibbs A, Lasio G, Jackson W. 3rd. 2014. The delayed pulmonary syndrome following acute high-dose irradiation: a rhesus macaque model. Health Phys. 106:56–72.
  • Gaugler C, Squiban A, VanDerMee MH. 1997. Late and persistent up-regulation of intercellular adhesion molecule-1 (icam-1) expression by ionizing radiation in human endothelial cells in vitro. Int J Radiat Biol. 72:201–209.
  • Ghosh SN, Wu Q, Mader M, Fish BL, Moulder JE, Jacobs ER, Medhora M, Molthen RC. 2009. Vascular injury after whole thoracic x-ray irradiation in the rat. Int J Radiat Oncol Biol Phys. 74:192–199.
  • Ginhoux F, Jung S. 2014. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 14:392–404.
  • Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK. 2016. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol. 17:34.
  • Graves PR, Siddiqui F, Anscher MS, Movsas B. 2010. Radiation pulmonary toxicity: from mechanisms to management. Semin Radiat Oncol. 20:201–207.
  • Groover T, Christie AC., Merritt E. 1923. Interthoracic changes following roentgen treatment of breast carcinoma. Am Journal of Roetgenology. 10(10):471–476.
  • Gross N. 1981. The pathogenesis of radiation-induced lung damage. Lung. 159:115–125.
  • Gross N, Balis J. 1978. Functional, biochemical, and morphologic changes in alveolar macrophages following thoracic x-irradiation. Lab Invest. 39:381–389.
  • Groves AM, Johnston CJ, Misra RS, Williams JP, Finkelstein JN. 2015. Whole-lung irradiation results in pulmonary macrophage alterations that are subpopulation and strain specific. Radiat Res. 184:639–649.
  • Groves AM, Johnston CJ, Misra RS, Williams JP, Finkelstein JN. 2016. Effects of il-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int J Radiat Biol. 92:754–765.
  • Groves AM, Johnston CJ, Williams JP, Finkelstein JN. 2018. Role of infiltrating monocytes in the development of radiation-induced pulmonary fibrosis. Radiat Res. 189:300–311.
  • Gudkov AV, Komarova EA. 2003. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer. 3:117–129.
  • Hall E, Giaccia A. 2012. Radiobiology for the radiobiologist.7th ed. Philadelphia: Lippincott Williams and Wilkins.
  • Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, et al. 2013. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 38:792–804.
  • Helton ES, Chen X. 2007. P53 modulation of the DNA damage response. J Cell Biochem. 100:883–896.
  • Hernando M, Marks L, Bentel G, Zhou S, Hollis D, Das S, Fan M, Munley M, Shafman T, Anscher M, et al. 2001. Radiation induced pulmonary toxicity: a dose-volume histogram analysis. Int J Radiation Oncology Biol Phys. 51:650–659.
  • Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC, Niklason L, Calle E, Le A, Randell SH, et al. 2014. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell. 15:123–138.
  • Hong J-H, Jung S-M, Tsao TCY, Wu C-J, Lee C-Y, Chen F-H, Hsu C-H, Mcbride WH, Chiang C-S. 2003. Bronchoalveolar lavage and interstitial cells have different roles in radiation-induced lung injury. Int J Radiat Biol. 79:159–167.
  • Hopewell W, Rezvani M, Moustafa H. 2000. The pig as a model for the study of radiation effects on the lung. Int J Radiat Biol. 76:447–452.
  • Hunninghake GW, Kawanami O, Ferrans VJ, Young Jr RC, Roberts WC, Crystal RG. 1981. Characterization of the inflammatory and immune effector cells in the lung parenchyma of patients with interstitial lung disease. Am Rev Respir Dis. 123(4):407–412.
  • Igarashi K, Sakimoto I, Kataoka K, Ohta K, Miura M. 2007. Radiation-induced senescence-like phenotype in proliferating and plateau-phase vascular endothelial cells. Exp Cell Res. 313:3326–3336.
  • Iwabuchi K, Li B, Massa HF, Trask BJ, Date T, Fields S. 1998. Stimulation of p53-mediated transcriptional activation by the p53-binding proteins, 53bp1 and 53bp2. J Biol Chem. 273:26061–26068.
  • Jackson IL, Vujaskovic Z, Down J. 2011. A further comparison of pathologies after thoracic irradiation among different mouse strains: finding the best preclinical model for evaluating therapies directed against radiation-induced lung damage. Radiat Res. 175:510–518.
  • Jackson IL, Xu PT, Nguyen G, Down JD, Johnson CS, Katz BP, Hadley CC, Vujaskovic Z. 2014. Characterization of the dose response relationship for lung injury following acute radiation exposure in three well-established murine strains: developing an interspecies bridge to link animal models with human lung. Health Phys. 106:48–55.
  • Johnston CJ, Hernady E, Reed C, Thurston SW, Finkelstein JN, Williams JP. 2010. Early alterations in cytokine expression in adult compared to developing lung in mice after radiation exposure. Radiat Res. 173:522–535.
  • Johnston CJ, Williams JP, Okunieff P, Finkelstein J. 2002. Radiation-induced pulmonary fibrosis: examination of chemokine and chemokine receptor families. Radiat Res. 157:256–265.
  • Johnston CJ, Wright T, Rubin P, Finkelstein JN. 1998. Alterations in the expression of chemokine mrna levels in fibrosis-resistant and -sensitive mice after thoracic irradiation. Exp Lung Res. 24:321–337.
  • Johnston CJ, Piedboeuf B, Rubin P, Williams JP, Baggs R, Finkelstein JN. 1996. Early and persistent alterations in the expression of interleukin-1a, interleukin-1b and tumor necrosis factor a mrna levels in fibrosis-resistant and sensitive mice after thoracic irradiation. Radiat Res. 145:762–767.
  • Kalash R, Berhane H, Au J, Rhieu BH, Epperly MW, Goff J, Dixon T, Wang H, Zhang X, Franicola D, et al. 2014. Differences in irradiated lung gene transcription between fibrosis-prone c57bl/6nhsd and fibrosis-resistant c3h/henhsd mice. In Vivo. 28:147–171.
  • Kalash R, Berhane H, Goff J, Houghton F, Epperly MW, Dixon T, Zhang X, Sprachman MM, Wipf P, Franicola D, et al. 2013. Effects of thoracic irradiation on pulmonary endothelial compared to alveolar type-ii cells in fibrosis-prone c57bl/6ntac mice. In Vivo. 27:291–297.
  • Kang SK, Rabbani ZN, Folz RJ, Golson ML, Huang H, Yu D, Samulski TS, Dewhirst MW, Anscher MS, Vujaskovic Z. 2003. Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury. Int J Radiat Oncol Biol Phys. 57:1056–1066.
  • Kharofa J, Cohen EP, Tomic R, Xiang Q, Gore E. 2012. Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy. Int J Radiat Oncol Biol Phys. 84:238–243.
  • Kim GJ, Chandrasekaran K, Morgan WF. 2006. Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: a review. Mutagenesis. 21:361–367.
  • Kim GJ, Fiskum GM, Morgan WF. 2006. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability. Cancer Res. 66:10377–10383.
  • Kliment CR, Oury TD. 2010. Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic Biol Med. 49:707–717.
  • Kma L, Gao F, Fish BL, Moulder JE, Jacobs ER, Medhora M. 2012. Angiotensin converting enzyme inhibitors mitigate collagen synthesis induced by a single dose of radiation to the whole thorax. J Radiat Res. 53:10–17.
  • Kropski JA, Fremont RD, Calfee CS, Ware LB. 2009. Clara cell protein (cc16), a marker of lung epithelial injury, is decreased in plasma and pulmonary edema fluid from patients with acute lung injury. Chest. 135:1440–1447.
  • Kunwar A, Haston CK. 2015. DNA damage at respiratory distress, but not acute time-points, correlates with tissue fibrosis following thoracic radiation exposure in mice. Int J Radiat Biol. 91:360–367.
  • Leach KJ, Tuyle GV, Lin P.S., Schmidt-Ullrich R, Mikkelsen R. 2001. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen-nitrogen. Cancer Res. 61:3894–3901.
  • Lebrun A, Lo Re S, Chantry M, Izquierdo Carerra X, Uwambayinema F, Ricci D, Devosse R, Ibouraadaten S, Brombin L, Palmai-Pallag M, et al. 2017. Ccr2+ monocytic myeloid-derived suppressor cells (M-MDSCs) inhibit collagen degradation and promote lung fibrosis by producing transforming growth factor-β1. J Pathol. 243:320–330.,
  • Lee J-G, Park S, Bae C-H, Jang W-S, Lee S-J, Lee DN, Myung JK, Kim CH, Jin Y-W, Lee S-S, et al. 2016. Development of a minipig model for lung injury induced by a single high-dose radiation exposure and evaluation with thoracic computed tomography. J Radiat Res. 57:201–209.
  • Liu G, Cheresh P, Kamp DW. 2013. Molecular basis of asbestos-induced lung disease. Annu Rev Pathol. 8:161–187.
  • Liu RM, Gaston Pravia KA. 2010. Oxidative stress and glutathione in tgf-beta-mediated fibrogenesis. Free Radic Biol Med. 48:1–15.
  • Lu T, Finkel T. 2008. Free radicals and senescence. Exp Cell Res. 314:1918–1922.
  • Machtay M, Scherpereel A, Santiago J, Lee J, McDonough J, Kinniry P, Arguiri E, Shuvaev VV, Sun J, Cengel K, et al. 2006. Systemic polyethylene glycol-modified (pegylated) superoxide dismutase and catalase mixture attenuates radiation pulmonary fibrosis in the c57bl6 mouse. Radiother Oncol. 81:196–205.
  • MacVittie TJ, Gibbs A, Farese AM, Barrow K, Bennett A, Taylor-Howell C, Kazi A, Prado K, Parker G, Jackson W. III. 2017. Aeol 10150 mitigates radiation-induced lung injury in the nonhuman primate: morbidity and mortality are administration schedule-dependent. Radiat Res. 187:298–318.
  • Mahmood J, Jelveh S, Zaidi A, Doctrow SR, Hill RP. 2013. Mitigation of radiation-induced lung injury with euk-207 and genistein: effects in adolescent rats. Radiat Res. 179:125–134.
  • Mahmood J, Jelveh S, Zaidi A, Doctrow SR, Medhora M, Hill RP. 2014. Targeting the renin-angiotensin system combined with an antioxidant is highly effective in mitigating radiation-induced lung damage. Int J Radiat Oncol Biol Phys. 89:722–728.
  • Maier P, Hartmann L, Wenz F, Herskind C. 2016. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int J Mol Sci. 17(1). doi:10.3390/ijms17010102
  • Malaviya R, Gow AJ, Francis M, Abramova EV, Laskin JD, Laskin DL. 2015. Radiation-induced lung injury and inflammation in mice: role of inducible nitric oxide synthase and surfactant protein d. Toxicol Sci. 144:27–38.
  • Manning CM, Johnston CJ, Hernady E, Miller JN, Reed CK, Lawrence BP, Williams JP, Finkelstein JN. 2013. Exacerbation of lung radiation injury by viral infection: the role of clara cells and clara cell secretory protein. Radiat Res. 179:617–629.
  • Martin M, Lefaix J, Delanian S. 2000. TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target?. Int J Radiat Oncol Biol Phys. 47:277–290.
  • McBride WH, Chiang C-S, Olson JL, Wang C-C, Hong J-H, Pajonk F, Dougherty GJ, Iwamoto KS, Pervan M, Liao Y-P. 2004. A sense of danger from radiation. Radiat Res. 162:1–19.
  • McDonald S, Rubin P, Constine L, Williams JP, Finkelstein J, Smudzin T. 1995. Biochemical markers as predictors for pulmononary effects of radiation. Radiat Oncol Investig. 3:56–63.
  • McDonald S, Rubin P, Phillips T, Marks L. 1995. Injury to the lung from cancer therapy- clinical syndromes, potential endpoints and scoring systems. Int J Radiation Oncology Biol Phys. 31:1187–1203.
  • Meziani L, Mondini M, Petit B, Boissonnas A, de Montpreville VT, Mercier O, Vozenin M-C, Deutsch E. 2018. Csf1r inhibition prevents radiation pulmonary fibrosis by depletion of interstitial macrophages. Eur Respir J. 51:1702120.
  • Minagawa S, Araya J, Numata T, Nojiri S, Hara H, Yumino Y, Kawaishi M, Odaka M, Morikawa T, Nishimura SL, et al. 2011. Accelerated epithelial cell senescence in ipf and the inhibitory role of sirt6 in TGF-β-induced senescence of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 300:L391–L401.
  • Misharin AV, Morales-Nebreda L, Reyfman PA, Cuda CM, Walter JM, McQuattie-Pimentel AC, Chen C-I, Anekalla KR, Joshi N, Williams KJN, et al. 2017. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med. 214:2387–2404.
  • Morgan W, Sowa M. 2015. Non-targeted effects induced by ionizing radiation: mechanisms and potential impact on radiation induced health effects. Cancer Lett. 356:17–21.
  • Morgan GW, Pharm B, Breit SN. 1995. Radiation and the lung: a reevaluation of the mechanisms mediating pulmonary injury. Int J Radiat Oncol Biol Phys. 31:361–369.
  • Morikawa M, Derynck R, Miyazono K. 2016. Tgf-beta and the tgf-beta family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 8:a021873.
  • Moses HL, Roberts AB, Derynck R. 2016. The discovery and early days of tgf-beta: a historical perspective. Cold Spring Harb Perspect Biol. 8(7). doi:10.1101/cshperspect.a021865
  • Mühlfeld C, Madsen J, Mackay R-M, Schneider JP, Schipke J, Lutz D, Birkelbach B, Knudsen L, Botto M, Ochs M, et al. 2017. Effect of irradiation/bone marrow transplantation on alveolar epithelial type ii cells is aggravated in surfactant protein d deficient mice. Histochem Cell Biol. 147:49–61.
  • Munoz-Espin D, Serrano M. 2014. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 15:482–496.
  • Murigi FN, Mohindra P, Hung C, Salimi S, Goetz W, Pavlovic R, Jackson IL, Vujaskovic Z. 2015. Dose optimization study of aeol 10150 as a mitigator of radiation-induced lung injury in cba/j mice. Radiat Res. 184:422–432.
  • Murray LA, Chen Q, Kramer MS, Hesson DP, Argentieri RL, Peng X, Gulati M, Homer RJ, Russell T, van Rooijen N, et al. 2011. Tgf-beta driven lung fibrosis is macrophage dependent and blocked by serum amyloid p. Int J Biochem Cell Biol. 43:154–162.
  • Oh CW, Bump EA, Kim J-S, Janigro D, Mayberg MR. 2001. Induction of a senescence-like phenotype in bovine aortic endothelial cells by ionizing radiation. Radiat Res. 156:232–240.
  • Olive PL. 1998. The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiat Res. 150:S42–S51.
  • Ortega-Gómez A, Perretti M, Soehnlein O. 2013. Resolution of inflammation: an integrated view. EMBO Mol Med. 5:661–674.
  • Osterholzer JJ, Olszewski MA, Murdock BJ, Chen G-H, Erb-Downward JR, Subbotina N, Browning K, Lin Y, Morey RE, Dayrit JK, et al. 2013. Implicating exudate macrophages and ly-6chigh monocytes in ccr2-dependent lung fibrosis following gene-targeted alveolar injury. J Immunol. 190:3447–3457.
  • Pan J, Li D, Xu Y, Zhang J, Wang Y, Chen M, Lin S, Huang L, Chung EJ, Citrin DE, et al. 2017. Inhibition of bcl-2/xl with abt-263 selectively kills senescent type ii pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int J Radiat Oncol Biol Phys. 99:353–361.
  • Panganiban RA, Day RM. 2013. Inhibition of igf-1r prevents ionizing radiation-induced primary endothelial cell senescence. PLoS One. 8:e78589.
  • Panganiban RA, Mungunsukh O, Day RM. 2013. X-irradiation induces er stress, apoptosis, and senescence in pulmonary artery endothelial cells. Int J Radiat Biol. 89:656–667.
  • Paun A, Kunwar A, Haston CK. 2015. Acute adaptive immune response correlates with late radiation-induced pulmonary fibrosis in mice. Radiat Oncol. 10:45.
  • Peel D, Coggle J. 1980. The effect of x irradiation on alveolar macrophages in mice. Radiat Res. 81:10–19.
  • Perl A-KT, Riethmacher D, Whitsett JA. 2011. Conditional depletion of airway progenitor cells induces peribronchiolar fibrosis. Am J Respir Crit Care Med. 183:511–521.
  • Rangarajan S, Locy ML, Luckhardt TR, Thannickal VJ. 2016. Targeted therapy for idiopathic pulmonary fibrosis: where to now?. Drugs. 76:291–300.
  • Richardson RB. 2009. Ionizing radiation and aging: rejuvenating an old idea. Aging (Albany NY). 1:887–902.
  • Robbins ME, Diz DI. 2006. Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. Int J Radiat Oncol Biol Phys. 64:6–12.
  • Robbins ME, Zhao W. 2004. Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int J Radiat Biol. 80:251–259.
  • Rodemann HP, Blaese MA. 2007. Responses of normal cells to ionizing radiation. Semin Radiat Oncol. 17:81–88.
  • Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J. 2009. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 11:973–979.
  • Rodier F, Munoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppe J-P, Campeau E, Beausejour CM, Kim S-H, et al. 2011. DNA-scars: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci. 124:68–81.
  • Romero F, Shah D, Duong M, Penn RB, Fessler MB, Madenspacher J, Stafstrom W, Kavuru M, Lu B, Kallen CB, et al. 2015. A pneumocyte-macrophage paracrine lipid axis drives the lung toward fibrosis. Am J Respir Cell Mol Biol. 53:74–86.
  • Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S. 2015. DNA damage foci: meaning and significance. Environ Mol Mutagen. 56:491–504.
  • Rübe CE, Uthe D, Schmid KW, Richter KD, Wessel J, Schuck A, Willich N, Rübe C. 2000. Dose-dependent induction of transforming growth factor β (tgf-β) in the lung tissue of fibrosis-prone mice after thoracic irradiation. Int J Radiat Oncol Biol Phys. 47:1033–1042.
  • Rübe CE, Uthe D, Wilfert F, Ludwig D, Yang K, König J, Palm J, Schuck A, Willich N, Remberger K, et al. 2005. The bronchiolar epithelium as a prominent source of pro-inflammatory cytokines after lung irradiation. Int J Radiat Oncol Biol Phys. 61:1482–1492.
  • Rubin P, Casarett G. 1968. Clinical radiation pathology. Vol. 1 and 2. Philadelphia, PS: Saunders.
  • Rubin P, Finkelstein J, Shapiro D. 1992. Molecular biology mechanisms in the radiation induction of pulmonary injury syndromes: interrelationship between the alveolar macrophage and septal fibroblast. Int J Radiat Oncol Bio Phys. 24:93–101.
  • Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein J. 1995. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys. 33:99–109.
  • Sakai Y, Yamamori T, Yoshikawa Y, Bo T, Suzuki M, Yamamoto K, Ago T, Inanami O. 2018. Nadph oxidase 4 mediates ros production in radiation-induced senescent cells and promotes migration of inflammatory cells. Free Radic Res. 52:92–102.
  • Salama R, Sadaie M, Hoare M, Narita M. 2014. Cellular senescence and its effector programs. Genes Dev. 28:99–114.
  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. 2004. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 73:39–85.
  • Schaue D, Kachikwu EL, McBride WH. 2012. Cytokines in radiobiological responses: a review. Radiat Res. 178:505–523.
  • Schaue D, McBride WH. 2010. Links between innate immunity and normal tissue radiobiology. Radiat Res. 173:406–417.
  • Schultz LB, Chehab NH, Malikzay A, Halazonetis TD. 2000. P53 binding protein 1 (53bp1) is an early participant in the cellular response to DNA double strand breaks. J Cell Biol. 151:1381–1390.
  • Sharplin J, Franko A. 1989. A quantitative histological study of strain-dependent differences in the effects of irradiation on mouse lung during the intermediate and late phases. Radiat Res. 119:15–31.
  • Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. 1997. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest. 100:768–776.
  • Sisson TH, Mendez M, Choi K, Subbotina N, Courey A, Cunningham A, Dave A, Engelhardt JF, Liu X, White ES, et al. 2010. Targeted injury of type ii alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med. 181:254–263.
  • Snyder JC, Reynolds SD, Hollingsworth JW, Li Z, Kaminski N, Stripp BR. 2010. Clara cells attenuate the inflammatory response through regulation of macrophage behavior. Am J Respir Cell Mol Biol. 42:161–171.
  • Spagnolo P, Wells AU, Collard HR. 2015. Pharmacological treatment of idiopathic pulmonary fibrosis: an update. Drug Discov Today. 0(0):1–11.
  • Specks U, Martin WJ, Rohrbach MS. 1990. Bronchoalveolar lavage fluid angiotensin-converting enzyme in interstitial lung diseases. Am Rev Respir Dis. 141:117–123.
  • Spitz D, Azzam E, Li JJ, Gius D. 2004. Metabolic oxidation reduction reactions and cellular responses to ionizing radation: a unifying concept in stress biology. Cancer Metastasis Rev. 23:311–322.
  • Sternlicht MD, Wirkner U, Bickelhaupt S, Lopez Perez R, Tietz A, Lipson KE, Seeley TW, Huber PE. 2018. Radiation-induced pulmonary gene expression changes are attenuated by the ctgf antibody pamrevlumab. Respir Res. 19(1):14.
  • Stone HB, Coleman CN, Anscher MS, McBride WH. 2003. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 4:529–536.
  • Sun F, Sun H, Zheng X, Yang G, Gong N, Zhou H, Wang S, Cheng Z, Ma H. 2018. Angiotensin-converting enzyme inhibitors decrease the incidence of radiation-induced pneumonitis among lung cancer patients: a systematic review and meta-analysis. J Cancer. 9:2123.
  • Tada H, Ogushi F, Tani K, Nishioka Y, Miyata J-y, Sato K, Asano T, Sone S. 2003. Increased binding and chemotactic capacities of pdgf-bb on fibroblasts in radiation pneumonitis. Radiat Res. 159:805–811.
  • Thornton SC, Walsh BJ, Bennett S, Robbins JM, Foulcher E, Morgan GW, Penny R, Breit SN. 1996. Both in vitro and in vivo irradiation are associated with induction of macrophage-derived fibroblast growth factors. Clin Exp Immunol. 103:67–73.
  • Travis EL. 1980. The sequence of histological changes in mouse lungs after single doses of x rays. Int J Radiat Oncol Biol Phys. 6:345–347.
  • Turgut NH, Kara H, Elagoz S, Deveci K, Gungor H, Arslanbas E. 2016. The protective effect of naringin against bleomycin-induced pulmonary fibrosis in wistar rats. Pulm Med. 2016:7601393.
  • Vallée A, Lecarpentier Y, Guillevin R, Vallée J. 2017. Interactions between tgf-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget. 8:90579–90604.
  • Verhaegen F, Granton P, Tryggestad E. 2011. Small animal radiotherapy research platforms. Phys Med Biol. 56:R55.
  • Vujaskovic Z, Feng Q-F, Rabbani ZN, Anscher MS, Samulski TV, Brizel DM. 2002. Radioprotection of lungs by amifostine is associated with reduction in profibrogenic cytokine activity. Radiat Res. 157:656–660.
  • Wang BZ, Wang LP, Han H, Cao FL, Li GY, Xu JL, Wang XW, Wang LX. 2014. Interleukin-17a antagonist attenuates radiation-induced lung injuries in mice. Exp Lung Res. 40:77–85.
  • Ward WF, Kim YT, Molteni A, Solliday NH. 1988. Radiation-induced pulmonary endothelial dysfunction in rats: modification by an inhibitor of angiotensin converting enzyme. Int J Radiat Oncol Biol Phys. 15:135–140.
  • Werner E, Wang H, Doetsch PW. 2015. Role of pro-inflammatory cytokines in radiation-induced genomic instability in human bronchial epithelial cells. Radiat Res. 184:621–629.
  • Werner E, Wang Y, Doetsch PW. 2017. A single exposure to low- or high-let radiation induces persistent genomic damage in mouse epithelial cells in vitro and in lung tissue. Radiat Res. 188:373–380.
  • Westbury CB, Yarnold JR. 2012. Radiation fibrosis-current clinical and therapeutic perspectives. Clin Oncol (R Coll Radiol). 24:657–672.
  • Williams JP, Calvi L, Chakkalakal JV, Finkelstein JN, O'Banion MK, Puzas E. 2016. Addressing the symptoms or fixing the problem? Developing countermeasures against normal tissue radiation injury. Radiat Res. 186:1–16.
  • Williams JP, Hernady E, Johnston CJ, Reed CM, Fenton B, Okunieff P, Finkelstein JN. 2004. Effect of administration of lovastatin on the development of late pulmonary effects after whole-lung irradiation in a murine model. Radiat Res. 161:560–567.
  • Williams JP, Johnston CJ, Finkelstein J. 2010. Treatment for radiation-induced pulmonary late effects: spoiled for choice or looking in the wrong direction?. Curr Drug Targets. 11:1386–1394.
  • Williams JP, Newhauser W. 2018. Normal tissue damage: its importance, history and challenges for the future. Bjr. 91:20180048.
  • Williams JP, Brown SL, Georges GE, Hauer-Jensen M, Hill RP, Huser AK, Kirsch DG, Macvittie TJ, Mason KA, Medhora MM, et al. 2010. Animal models for medical countermeasures to radiation exposure. Radiat Res. 173:557–578.
  • Wirsdorfer F, Jendrossek V. 2016. The role of lymphocytes in radiotherapy-induced adverse late effects in the lung. Front Immunol. 7:591.
  • Witte L, Fuks Z, Haimovitz-Friedman A, Vlodavsky I, Goodman DS, Eldor A. 1989. Effects of irradiation on the release of growth factors from cultured bovine, porcine, and human endothelial cells. Cancer Res. 49:5066–5072.
  • Wynn TA, Barron L. 2010. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis. 30:245.
  • Xu L, Xiong S, Guo R, Yang Z, Wang Q, Xiao F, Wang H, Pan X, Zhu M. 2014. Transforming growth factor β3 attenuates the development of radiation-induced pulmonary fibrosis in mice by decreasing fibrocyte recruitment and regulating IFN-γ/IL-4 balance. Immunol Lett. 162:27–33.
  • Xu P-T, Maidment BW, Antonic V, Jackson IL, Das S, Zodda A, Zhang X, Seal S, Vujaskovic Z. 2016. Cerium oxide nanoparticles: a potential medical countermeasure to mitigate radiation-induced lung injury in cba/j mice. Radiat Res. 185:516–526.
  • Yahyapour R, Motevaseli E, Rezaeyan A, Abdollahi H, Farhood B, Cheki M, Rezapoor S, Shabeeb D, Musa A, Najafi M. 2018. Reduction–oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol. 20:975–988.
  • Yarnold J, Brotons MC. 2010. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 97:149–161.
  • Yatera K, Morimoto Y, Kim H-N, Myojo T, Mukae H. 2011. Foam cell formation of alveolar macrophages in clara cell ablated mice inhaling crystalline silica. Inhal Toxicol. 23:736–744.
  • Yona S, Jung S. 2010. Monocytes: subsets, origins, fates and functions. Curr Opin Hematol. 17:53–59.
  • Yoshida M, Whitsett JA. 2006. Alveolar macrophages and emphysema in surfactant protein‐d‐deficient mice. Respirology. 11:S37–S40.
  • Zhang H, Han G, Liu H, Chen J, Ji X, Zhou F, Zhou Y, Xie C. 2011. The development of classically and alternatively activated macrophages has different effects on the varied stages of radiation-induced pulmonary injury in mice. J Radiat Res. 52:717–726.
  • Zhang Y, Zhang X, Rabbani ZN, Jackson IL, Vujaskovic Z. 2012. Oxidative stress mediates radiation lung injury by inducing apoptosis. Int J Radiat Oncol Biol Phys. 83:740–748.
  • Zhang R, Ghosh SN, Zhu D, North PE, Fish BL, Morrow NV, Lowry T, Nanchal R, Jacobs ER, Moulder JE, et al. 2008. Structural and functional alterations in the rat lung following whole thoracic irradiation with moderate doses: injury and recovery. Int J Radiat Biol. 84:487–497.
  • Zhao W, Robbins M. 2009. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem. 16:130–143.
  • Zhou C, Jones B, Moustafa M, Schwager C, Bauer J, Yang B, Cao L, Jia M, Mairani A, Chen M, et al. 2017. Quantitative assessment of radiation dose and fractionation effects on normal tissue by utilizing a novel lung fibrosis index model. Radiat Oncol. 12:172.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.