Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 25, 2022 - Issue 9
412
Views
3
CrossRef citations to date
0
Altmetric
Articles

Combination of tea polyphenols and proanthocyanidins prevents menopause-related memory decline in rats via increased hippocampal synaptic plasticity by inhibiting p38 MAPK and TNF-α pathway

, , , , , , , & show all

References

  • Hou Z, He P, Imam MU, Qi J, Tang S, Song C, et al. Edible bird’s nest Prevents Menopause-Related memory and cognitive decline in rats via Increased Hippocampal sirtuin-1 expression. Oxid Med Cell Longev. 2017;2017. doi:10.1155/2017/7205082.
  • Shafi O. Inverse relationship between Alzheimer’s disease and cancer, and other factors contributing to Alzheimer’s disease: a systematic review. BMC Neurol. 2016;16(1):236, doi:10.1186/s12883-016-0765-2.
  • Dosunmu R, Wu J, Basha MR, Zawia NH. Environmental and dietary risk factors in Alzheimer’s disease. Expert Rev Neurother. 2007;7:887–900. doi:10.1586/14737175.7.7.887.
  • Gillette Guyonnet S, Abellan Van Kan G, Andrieu S, Barberger Gateau P, Berr C, Bonnefoy M, et al. IANA task force on nutrition and cognitive decline with aging. J Nutr Health Aging. 2007;11:132–152.
  • Xing L, Zhang H, Qi R, Tsao R, Mine Y. Recent advances in the understanding of the Health benefits and molecular mechanisms associated with Green Tea polyphenols. J Agric Food Chem. 2019;67(4):1029–1043. doi:10.1021/acs.jafc.8b06146.
  • Guo H, Cao M, Zou S, Ye B, Dong Y. Cranberry extract standardized for proanthocyanidins alleviates β-amyloid peptide toxicity by improving proteostasis through HSF-1 in caenorhabditis elegans model of Alzheimer’s disease. J Gerontol A Biol Sci Med Sci. 2016;71(12):1564–1573. doi:10.1093/gerona/glv165.
  • Bhatti AB, Usman M, Ali F, Satti SA. Vitamin supplementation as an adjuvanttreatment for Alzheimer’s disease. J Clin Diagn Res. 2016;10:OE07–OE11. doi:10.7860/JCDR/2016/20273.8261.
  • Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, et al. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front Aging Neurosci. 2019;11:155. doi:10.3389/fnagi.2019.00155.
  • Fernando W, Somaratne G, Goozee KG, Williams S, Singh H, Martins RN. Diabetes and Alzheimer’s disease: Can Tea phytochemicals play a role in prevention? J Alzheimers Dis. 2017;59(2):481–501. doi:10.3233/JAD-161200.
  • Mi Y, Qi G, Fan R, Qiao Q, Sun Y, Gao Y, Liu X. EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS. FASEB J. 2017;31(11):4998–5011. doi:10.1096/fj.201700400RR.
  • Yang K, Chan CB. Proposed mechanisms of the effects of proanthocyanidins on glucose homeostasis. Nutr Rev. 2017;75(8):642–657. doi:10.1093/nutrit/nux028.
  • Chen Q, Hu P. Proanthocyanidins prevent ethanol-induced cognitive impairment by suppressing oxidative and inflammatory stress in adult rat brain. Neuroreport. 2017;28(15):980–986. doi:10.1097/WNR.0000000000000867.
  • Wu S, Tian L. Diverse phytochemicals and bioactivities in the ancient fruit and modern functional food pomegranate (punica granatum). Molecules. 2017;22(10):E1606, doi:10.3390/molecules22101606.
  • Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L. Thakkar SK, da silva pinto M. bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol. 2013;75:588–602. doi:10.1111/j.1365-2125.2012.04425.x.
  • Zhang L, Virgous C, Si H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J Nutr Biochem. 2019;69:19–30. doi:10.1016/j.jnutbio.2019.03.009.
  • Lesné S1, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature. 2006;440(7082):352–357. doi:10.1038/nature04533.
  • Izumi Y, Zorumski CF. GABA and endocannabinoids mediate depotentiation of Schaffer collateral synapses induced by stimulation of temperoammonic inputs. PLoS One. 2016;11(2):e0149034, doi:10.1371/journal.pone.0149034.
  • Bocchio M, Nabavi S, Capogna M. Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron. 2017;94(4):731–743. doi:10.1016/j.neuron.2017.03.022.
  • Abraham WC, Jones OD, Glanzman DL. Is plasticity of synapses the mechanism of long-term memory storage? NPJ Sci Learn. 2019;4:9. doi:10.1038/s41539-019-0048-y
  • Baghcheghi Y, Mansouri S, Beheshti F, Shafei MN, Salmani H, Reisi P, et al. Neuroprotective and long term potentiation improving effects of vitamin E in juvenile hypothyroid rats. Int J Vitam Nutr Res. 2020;90(1-2):156–168. doi:10.1024/0300-9831/a000533.
  • Grassi S, Tozzi A, Costa C, Tantucci M, Colcelli E, Scarduzio M, et al. Neural 17β-estradiol facilitates long-term potentiation in the hippocampal CA1 region. Neuroscience. 2011;192:67–73. doi:10.1016/j.neuroscience.2011.06.078.
  • Penn AC, Zhang CL, Georges F, Royer L, Breillat C, Hosy E, et al. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors. Nature. 2017;549(7672):384–388. doi:10.1038/nature23658.
  • Dong Z, Han H, Li H, Bai Y, Wang W, Tu M, et al. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J Clin Invest. 2015;125(1):234–247. doi:10.1172/JCI77888.
  • Suresh A, Dunaevsky A. Relationship between synaptic AMPAR and spine dynamics: impairments in the FXS mouse. Cereb Cortex. 2017;27(8):4244–4256. doi:10.1093/cercor/bhx128.
  • Chen Z, Xiong C, Pancyr C, Stockwell J, Walz W, Cayabyab FS. Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK. J Neurosci. 2014;34(29):9621–9643. doi:10.1523/JNEUROSCI.3991-13.2014.
  • Shi S, Wang Z, Qiao Z. The multifunctional anti-inflammatory drugs used in the therapy of Alzheimers disease. Curr Med Chem. 2013;20(20):2583–2588. doi:10.2174/0929867311320200006.
  • Zhao H, Li X, Li N, Liu T, Liu J, Li Z, et al. Long-term resveratrol treatment prevents ovariectomy-induced osteopenia in rats without hyperplastic effects on the uterus. Br J Nutr. 2014;111:836–846. doi:10.1017/S0007114513003115.
  • Irwin RW, Solinsky CM, Brinton RD. Frontiers in therapeutic development of allopregnanolone for Alzheimer’s disease and other neurological disorders. Front Cell Neurosci. 2014;8:203, doi:10.3389/fncel.2014.00203.
  • Stone JG, Casadesus G, Gustaw-Rothenberg K, Siedlak SL, Wang X, Zhu X, et al. Frontiers in Alzheimer’s disease therapeutics. Ther Adv Chronic Dis. 2011;2(1):9–23. doi:10.1177/2040622310382817.
  • Unno, K, Pervin, M, Nakagawa, A, Iguchi, K, Hara, A, Takagaki, A, et al. Blood-Brain barrier permeability of Green Tea catechin Metabolites and their neuritogenic activity in human neuroblastoma SH-SY5Y cells. Mol Nutr Food Res. 2017;61(12):1700294. doi:10.1002/mnfr.201700294.
  • Wu S, Yue Y, Li J, Li Z, Li X, Niu Y, et al. Procyanidin B2 attenuates neurological deficits and blood-brain barrier disruption in a rat model of cerebral ischemia. Mol Nutr Food Res. 2015;59(10):1930–1941. doi:10.1002/mnfr.201500181.
  • Zhang Z, Wu H, Huang H. Epicatechin Plus treadmill exercise are Neuroprotective against moderate-stage amyloid precursor protein/presenilin 1 mice. Pharmacogn Mag. 2016;12(Suppl 2):S139–S146. doi:10.4103/0973-1296.182174.
  • Xiao Y, Dong J, Yin Z, Wu Q, Zhou Y, Zhou X. Procyanidin b2 protects against d-galactose-induced mimetic aging in mice: Metabolites and microbiome analysis. Food Chem Toxicol. 2018;119:141–149. doi:10.1016/j.fct.2018.05.017.
  • Wang J, Ferruzzi MG, Ho L, Blount J, Janle EM, Gong B, et al. Brain-targeted proanthocyanidin metabolites for Alzheimer’s disease treatment. J Neurosci. 2012;32(15):5144–5150. doi:10.1523/JNEUROSCI.6437-11.2012.
  • Chepkova AN, Sergeeva OA, Haas HL. Alterations of corticostriatal plasticity by ammonium and rescue by green tea polyphenols. Arch Biochem Biophys. 2013;536(2):176–182. doi:10.1016/j.abb.2013.02.002.
  • Zou C, Montagna E, Shi Y, Peters F, Blazquez-Llorca L, Shi S, et al. Intraneuronal APP and extracellular Aβ independently cause dendritic spine pathology in transgenic mouse models of Alzheimer’s disease. Acta Neuropathol. 2015;129(6):909–920. doi:10.1007/s00401-015-1421-4.
  • Ano Y, Ohya R, Kita M, Taniguchi Y, Kondo K. Theaflavins improve memory impairment and depression-like behavior by regulating microglial activation. Molecules. 2019;24(3):467, doi:10.3390/molecules24030467.
  • Lee YA, Cho EJ, Yokozawa T. Oligomeric proanthocyanidins improve memory and enhance phosphorylation of vascular endothelial growth factor receptor-2 in senescence-accelerated mouse prone/8. Br J Nutr. 2010;103(4):479–489. doi:10.1017/S0007114509992005.
  • Boros BD, Greathouse KM, Gentry EG, Boros BD, Greathouse KM, Gentry EG, et al. Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann Neurol. 2017;82(4):602–614. doi:10.1002/ana.25049.
  • Jaworski J, Kapitein LC, Gouveia SM, Dortland BR, Wulf PS, Grigoriev I, et al. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron. 2009;61(1):85–100. doi:10.1016/j.neuron.2008.11.013.
  • Cai ZL, Wang CY, Gu XY, Wang NJ, Wang JJ, Liu WX, et al. Tenuigenin ameliorates learning and memory impairments induced by ovariectomy. Physiol Behav. 2013;118:112–117. doi:10.1016/j.physbeh.2013.05.025.
  • Han YY, Wang XD, Liu L, Guo HM, Cong W, Yan WW, et al. L-type VDCCs participate in behavioral-LTP and memory retention. Neurobiol Learn Mem. 2017;145:75–83. doi:10.1016/j.nlm.2017.08.011.
  • Xu X, Xie L, Hong X, Ruan Q, Lu H, Zhang Q, et al. Perinatal exposure to bisphenol-A inhibits synaptogenesis and affects the synaptic morphological development in offspring male mice. Chemosphere. 2013;91(8):1073–1081. doi:10.1016/j.chemosphere.2012.12.065.
  • Li S, Kang L, Zhang C, Xie G, Li N, Zhang Y, et al. Effects of dihydrotestosterone on synaptic plasticity of hippocampus in male SAMP8 mice. Exp Gerontol. 2013;48(8):778–785. doi:10.1016/j.exger.2013.04.014.
  • Coley AA, Gao WJ. PSD95: a synaptic protein implicated in schizophrenia or autism? Prog Neuropsychopharmacol Biol Psychiatry. 2018;82:187–194. doi:10.1016/j.pnpbp.2017.11.016.
  • Ren SQ, Yan JZ, Zhang XY, Bu YF, Pan WW, Yao W, et al. PKCλ is critical in AMPA receptor phosphorylation and synaptic incorporation during LTP. EMBO J. 2013;32(10):1365–1380. doi:10.1038/emboj.2013.60.
  • Xu HN, Li LX, Wang YX, Wang HG, An D, Heng B, Liu YQ. Genistein inhibits Aβ25-35 -induced SH-SY5Y cell damage by modulating the expression of apoptosis-related proteins and Ca2+ influx through ionotropic glutamate receptors. Phytother Res. 2019;33(2):431–441. doi:10.1002/ptr.6239.
  • Baglietto-Vargas D, Prieto GA, Limon A, Forner S, Rodriguez-Ortiz CJ, Ikemura K, et al. Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer’s disease. Aging Cell. 2018;17(4):e12791, doi:10.1111/acel.12791.
  • Krapivinsky G, Medina I, Krapivinsky L, Gapon S, Clapham DE. SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAPK activity and NMDA receptor-dependent synaptic AMPA receptor. Neuron. 2004;43(4):563–574. doi:10.1016/j.neuron.2004.08.003.
  • Yang WN, Ma KG, Qian YH, Zhang JS, Feng GF, Shi LL, et al. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons. Int J Biochem Cell Biol. 2015;64:252–264. doi:10.1016/j.biocel.2015.04.013.
  • Nagae T, Araki K, Shimoda Y, Sue LI, Beach TG, Konishi Y. Cytokines and Cytokine receptors involved in the pathogenesis of Alzheimer’s disease. J Clin Cell Immunol. 2016;7(4):441, doi:10.4172/2155-9899.1000441.
  • Yunoki T, Deguchi K, Omote Y, N1 L, Liu W, Hishikawa N, et al. Anti-oxidative nutrient-rich diet protects against acute ischemic brain damage in rats. Brain Res. 2014;1587:33–39. doi:10.1016/j.brainres.2014.08.056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.