350
Views
10
CrossRef citations to date
0
Altmetric
Articles

Synchrotron-based and globar-sourced molecular (micro)spectroscopy contributions to advances in new hulless barley (with structure alteration) research on molecular structure, molecular nutrition, and nutrient delivery

& , PhD

References

  • Abeysekara, S., Damiran, D. and Yu, P. (2011). Spectroscopic impact on protein and carbohydrate inherent molecular structure of barley, oat and corn combined with wheat DDGS. Spectroscopy: Intl. J. 26:255–257.
  • Anderson, D. M., MacIsaac, J. L. and Safamehr, A. (2012). Dilution of broiler chicken diets with whole hulless barley. J. Appl. Poult. Res. 21:399–406.
  • Bacic, A. and Stone, B. A. (1981). Chemistry and organization of aleirone cell wall components from wheat and barley. Austral. J. Plant Physiol. 8:475–495.
  • Bae, I. Y., Lee, S., Kim, S. M. and Lee, H. G. (2009). Effect of partially hydrolyzed oat beta-glucan on the weight gain and lipid profile of mice. Food Hydrocol. 23:2016–2021.
  • Beames, R. M., Helm, J. H., Eggum, B. O., Boisen, S., Bach Knudsen, K. E. and Swife, M. L. (1996). A comparison of methods for measuring the nutritive value for pigs of a range of hulled and hulless barley cultivars. Anim. Feed Sci. Technol. 62:189–201.
  • Beattie, D. A., Beaussart, A., Mierczynska-Vasilev, A., Harmer, S. L., Thierry, B., Puskar, L. and Tobin, M. (2012). Synchrotron FTIR microscopy of Langmuir−Blodgett monolayers and polyelectrolyte multilayers at the solid−solid interface. Langmuir. 28:1683–1688.
  • Becker, P. M. and Yu, P. (2013). What makes protein indigestible from tissue, cellular and molecular structure aspects? Mol. Nutr. Food Res. 57:1695–1707.
  • Bhatty, R. S. (1986). The potential of hull-less barley—A review. Cereal Chem. 63:97–103.
  • Bhatty, R. S. (1999). The potential of hull-less barley. Cereal Chem. 76(5): 589–599.
  • Bhatty, R. S., Berdahl, J. D. and Christison, G. I. (1975). Chemical composition and digestible energy of barley. Can. J. Animal Sci. 35:759–764.
  • Bird, A. R., Vuaran, M., Brown, I. and Topping, I. L. (2007). Two high amylose maize starches with different amounts of resistant starch vary in their effects on fermentation, tissue and digesta mass accretion, and bacterial populations in the large bowel of pigs. Brit. J. Nutri. 97:134–144.
  • Black, M. (2000). Seed Technology and Its Biological Basis. CRC Press, Boca Raton, FL, p. 419.
  • Blake, T., Blake, V. C., Bowman, J. G. P. and Abdel-Haleem, H. (2011). Barley feed uses and quality improvements. In: Barley: Production, Improvement, and Uses, pp. 522–531. Ullrich S. E., Ed., Wiley-Blackwell, Ames, IA.
  • Bleidere, M. and Gaile, Z. (2012). Grain quality traits important in feed barley. Proc. Latvian Acad. Sci., Sec. B. (66):1–9.
  • Boros, D., Rek-Cieply, B. and Cyran, M. (1996). A note on the composition and nutritional value of hulless barley. J. Animal Feed Sci. 5:417–424.
  • Budevska, B. O. (2002). Applications of vibrational spectroscopy in life, pharmaceutical and natural sciences. In: Handbook of Vibrational Spectroscopy, Vol. 5, pp. 3720–3732. Chalmers, J. M. and Griffiths, P. R., Eds., John Wiley, New York.
  • Butt, M. S., Tahir-Nadeem, M., Khan, M. K. I., Shabir, R. and Butt, M. S. (2008). Oat: Unique among the cereals. European J. Nutri. 47:68–79.
  • Calsamiglia, S. and Stern, M. D. (1995). A three-step in vitro procedure for estimating intestinal digestion of protein in ruminants. J. Anim. Sci. 73:1459–1465.
  • Campbell, L. D., Biola, R. J. and Stothers, S. C. (1995). Variation in the chemical composition and test weight of barley and wheat grain grown at selected locations throughout Manitoba. Can. J. Anim. Sci. 75:239–246.
  • Cerrilla, M. E. O. and Martinez, G. M. (2003). Starch digestion and glucose metabolism in the ruminant: A review. Interciencia 28:380–386.
  • CFIA (Canadian Food Inspection Agency). (2009). Barley [Online].Available from http://www.inspection.gc.ca/english/plaveg/pbrpov/cropreport/bare.shtml. Accessed October 9, 2012.
  • Chae, B. J., Lohakare, J. D., Moon,W. K., Lee, S. L., Park, Y. H. and Hahn, T. W. (2006). Effects of supplementation of beta-glucan on the growth performance and immunity in broilers. Res.Vet. Sci. 80:291–298.
  • Chalupa, W. and Boston, R. (2003). Development of the CNCPS and CPM models: The Sniffen affect. In: Proceedings of Cornell Nutrition Conference for Feed Manufacturers. New York State College of Agriculture and Life Sciences, Cornell University, Syracuse, NY, pp. 15–24.
  • Charalampopoulos, D., Wang, R., Pandella, S. S. and Webb, C. (2002). Application of cereals and cereal components in functional food: A review. Intl. J. Food Microbiol. 79:131–141.
  • Cheol-Heui, Y., Estrada, A., Van Kessel, A., Byung-Chul, P. I. and Laarveld, B. (2003). Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infection. FEMS Immunol. Med. Microbiol. 35:67–75.
  • Choo, T. M., Roswell, J., Martin, R. A., Ho, K. M. and Etienne, M. (2003). Effects of environment, seeding rate, and fungicide on grain yield and hull retention of hulless barley. In: Eastern Expert Committee on Cereals and Oilseeds Annual Meeting, 9–11 February, AAFC-ECORC, Ottawa, ON.
  • Cox, C. M. and Dalloul, R. A. (2010). Beta-glucans as immunomodulators in poultry: Use and potential applications. Avian Biol. Res. 3(4): 171–178.
  • Damiran, D. and Yu, P. (2010). Chemical profile, rumen degradation kinetics, and energy value of four hull-less barley cultivars: Comparison of the zero-amylose waxy, waxy, high-amylose, and normal starch cultivars. J. Agric. Food Chem. 58:10553–10559.
  • Damiran, D. and Yu, P. (2011). Molecular basis of structural makeup of hulless barley in relation to rumen degradation kinetics and intestinal availability in dairy cattle: A novel approach. J. Dairy Sci. 94:5151–5159.
  • Damiran, D. and Yu, P. (2012). Metabolic characteristics in ruminants of the proteins in newly developed hull-less barley varieties with altered starch traits. J. Cereal Sci. 55:351–360.
  • Demirbas, A. (2005). β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem. 90:773–777.
  • Dhanoa, M. S. (1988). On the analysis of dracon bag data for low degradability feeds. Grass Forage Sci. 43:441–444.
  • Dieckmann, K. (2011). betaBARLEY→ – the new beta-glucan-rich barley for baking and more. Baking+biscuit. 1:58–62.
  • Doiron, K. J., Yu, P., Christensen, C. R., Christensen, D. A. and McKinnon, J. J. (2009). Detecting molecular changes in Vimy flaxseed protein structure using synchrotron FTIRM and DRIFT spectroscopic techniques: Structural and biochemical characterization. Spectroscopy. 23:307–322.
  • Dreher, M. L., Dreher, C. J. and Berry, J. W. (1984). Starch digestibility of foods: A nutritional perspective. Crit. Rev. Food Sci. Nutri. 20:47–71.
  • Dritz, S. S., Shi, J., Kielian, T. L., Goodband, R. D., Nelssen, J. L., Tokach, M. D., Chengappa, M. M., Smith, J. E. and Blecha, F. (1995). Influence of dietary beta-glucan on growth performance, nonspecific immunity, and resistance to streptococcus suis infection in weanling pigs. J. Anim. Sci. 73:3341–3350.
  • Du, L. and Yu, P. (2010). Effect of barley variety and growth year on ferulic and para-coumaric acids and their ratios in the seed and hull. Cereal Res. Comm. 38:521–532.
  • Du, L. and Yu, P. (2011). Relationship of physicochemical characteristics and hydrolyzed hydroxycinnamic acid profile of barley varieties and nutrient availability in ruminants. J. Cereal Sci. 53:178–187.
  • Du, L., Yu, P., Rossnagel, B. G., Christensen, D. A. and McKinnon, J. J. (2009). Physicochemical characteristics, hydroxycinnamic acids (ferulic acid, ρ-coumaric acid) and their ratio and in situ biodegradability: Comparison genotypic differences among six barley varieties. J. Agric. Food Chem. 57:4777–4783.
  • Edney, M., Tkachuk, R. and MacGregor, A. W. (1992). Nutrient composition of hull-less barley cultivar, condor. J. Sci. Food Agric. 60:451–456.
  • Evers, A. D., Blakeney, A. B. and Brien, L. O. (1999). Cereal structure and composition. Austral. J. Agr. Res. 50:629–650.
  • Fox, D. G., Sniffen, C. J., O'Connor, J. D., Russell, J. B. and Van Soest, P. J. (1992). A net carbohydrate and protein system for evaluating cattle diets. III. Cattle requirements and diet adequacy. J. Anim. Sci. 70:3578–3596.
  • Fox, D. G., Tedeschi, L. O., Tylutki, T. P., Russell, J. B., Van Amburgh, M. E., Chase, L. E., Pell, A. N. and Overton, T. R. (2004). The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 112:29–78.
  • Gajdošová, A., Petruláková, Z., Havrlentová, M., Červená, V., Hozová, B., Šturdík, E. and Kogan, G. (2007). The content of water-soluble and water-insoluble β-D-glucans in selected oats and barley varieties. Carbohyd. Polym. 70:46–52.
  • Gamage, I. H., Jonker, A., Christensen, D. A. and Yu, P. (2012). Metabolic characteristics of proteins and biomolecular spectroscopic profiles in different batches of feedstock (wheat) and their co-products (wheat dried distillers grains with solubles) from the same bioethanol processing plant. J. Dairy Sci. 95:1–21.
  • Gamage, I. H., Jonker, A., Zhang, X. and Yu, P. (2014). Non-destructive analysis of the conformational differences among feedstock sources and their relevant co-products from bioethanol production with molecular spectroscopy. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 118:407–421.
  • Gamage, I. H. and Yu, P. (2013). Short communication: Comparison of newly developed DVE/OEB2010 system and NRC 2001 model in modeling metabolic characteristics of proteins. J. Dairy Sci. 96:5908–5913.
  • Garrett, W. N. (1980). Energy utilization by growing cattle as determined in 72 comparative slaughter experiments. Energy Metab. Proc. Symp. 26:3–7.
  • Griffiths, P. R. and de Haseth, J. A. (2007). Fourier Transform Infrared Spectrometry. 2nd ed. John Wiley, Hoboken, NJ.
  • Gruve, A..V., Kaiser, C. R., Iverson, N., Hafla, A., Robinson, B..L. and Bowman, J. G. P. (2006). Digestibility of barley beta-glucan in cattle. Proc. Western Sec. Am. Soc. Anim. Sci. 57:367–369.
  • Gruve, A..V., Kaiser, C. R., Wiley, J. A., Harmsen, A. G. and Bowman, J. G. P. (2008). Feeding barley beta-glucans to simulate the immune system of calves challenged with BVDV. Proc. Western Sec. Am. Soc. Anim. Sci. 59:387–390.
  • Guo, Y., Ali, R. A. and Qureshi, M. A. (2003). The influence of beta-glucan on immune responses in broiler chicks. Immunopharmacol. Immunotoxicol. 25:461–472.
  • Hart, K..J., Rossnagel, B..G. and Yu, P. 2008. Chemical characteristics and in situ ruminal parameters of barley for cattle: Comparison of the malting cultivar AC Metcalfe and five feed cultivars. Can. J. Anim. Sci. 88:711–719.
  • Havrlentová, M. and Kraic, J. (2006). Content of beta-d-glucan in cereal grains. J. Food Res. Nutri. 45:97–103.
  • Havrlentová, M., Petruláková, Z., Burgárová, A., Gago, F., Hlinková, A. and Šturdík E. (2011). Cereal β-glucans and their significance for the preparation of functional foods—a review. Czech J. Food Sci. 29:1–14.
  • Hesselman, K. and Aman, P. (1986). The effect of β-glucanase on the utilization of starch and nitrogen by broiler chickens fed on barley of low and high viscosity. Anim. Feed Sci. Technol. 15:83–93.
  • Hiss, S. and Sauerwein, H. (2003). Influence of dietary β-glucan on growth performance, lymphocyte proliferation, specific immune response and haptoglobin plasma concentrations in pigs. J. Anim. Physiol. Anim. Nutr. (Berl.), 87:2–11.
  • Holman, Hoi-Ying, N., Bjornstad, K. A., McNamara, M. P., Martin, M. C., McKinney, W. R. and Blakely, E. A. (2002). Synchrotron infrared spectromicroscopy as a novel bioanalytical microprobe for individual living cells: Cytotoxicity considerations. J. Biomed. Optics. 7:1–10.
  • Holtekjølen, A. K., Uhlen, A. K., Brathen, E. S., Sahlstrom, S. and Knutsen, S. H. (2006). Contents of starch and non-starch polysaccharides in barley varieties of different origin. Food Chem. 94:348–358.
  • Hristov, A. N., Ropp, J. K. and Hunt, C. W. (2002). Effect of barley and its amylopectin content on ruminal fermentation and bacterial utilization of ammonia-N in vitro. Anim. Feed Sci. Technol. 99:25–36.
  • Hsu, C. P. S. (1997). Infrared spectroscopy. Handbook of Instrumental Techniques for Analytical Chemistry, pp. 247–284. Settle, F. A., Ed., Prentice-Hall, Englewood Cliffs, NJ.
  • Izydorczyk, M. S. and Dexter, J. E. (2008). Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products—a review. Food Res. Int. 41:850–868.
  • Jackson, M. and Mantsch, H. H. (2000). Infrared spectroscopy ex vivo tissue analysis. In: Encyclopedia of Analytical Chemistry, pp. 131–156. Myers, R. A., Ed., John Wiley, Chichester, UK.
  • Jha, R., Rossnagel, B., Pieper, R., Van Kessel, A. and Leterme, P. (2010). Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets. Animal. 4(5):724–731.
  • Jonker, A., Gruber, M. Y., Wang, Y., Coulman, B., McKinnon, J. J., Christensen, D. A. and Yu, P. (2012). Foam stability of leaves from anthocyanidin-accumulating Lc-alfalfa and relation to molecular structures detected by FTIR vibration spectroscopy. Grass Forage Sci. 67:369–381.
  • Juskiw, P. E., Helm, J. H. and Salmon, D. F. (2011). Breeding of feed grains for Western Canada. Americas J. Plant Sci. Biotech. 1:64–77.
  • Kim, S. Y., Song, H. J., Lee, Y. Y., Cho, K. H. and Roh, Y. K. (2006). Biomedical issues of dietary fiber β-glucan. J. Kor. Med. Sci. 21:781–789.
  • Kizil, R., Irudayaraj, J. and Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem. 50:3912–3918.
  • Krishnamoorthy, U. C., Sniffen, C. J., Stem, M. D. and Van Soest, P. J. (1983). Evaluation of a mathematical model of digesta and in-vitro simulation of rumen proteolysis to estimate the rumen undegraded nitrogen content of feedstuffs. Br. J. Nutri. 50:555–568.
  • Kulp, K. and Ponte, J. G. (2000). Handbook of Cereal Science and Technology. 2nd, rev. and expanded edn., p. 790, Marcel Dekker, New York.
  • Langworthy, C. F. and Deuel Jr., H. J. (1922). Digestibility of raw rice, arrowroot, canna, cassava, taro, tree-fern, and potato starches. J. Biol. Chem. 52:251–261.
  • Lanzas, C., Sniffen, C. J., Seo, S., Tedeschi, L. O. and Fox, D. G. (2007). A feed carbohydrate fractionation scheme for formulating rations for ruminants. Anim. Feed Sci. Technol. 136:167–190.
  • Lazaridou, A., Biliaderis, C. G., Micha-Screttas, M. and Steele, B. R. (2004). A comparative study on structure function relations of mixed-linkage (1→3), (1→4) linear β-d-glucans. Food Hydrocol. 18:837–855.
  • Lee, S., Inglett, G. E., Palmquist, D. and Warner, K. (2009). Flavor and texture attributes of foods containing beta-glucan-rich hydrocolloids from oats. LWT–Food Sci. Tech. 42:350–357.
  • Lehman, K. B., Okine, E. K., Mathison, G. W. and Helm, J. (1995). In situ degradabilities of barley grain cultivars. Can. J. Anim. Sci. 75:485–487.
  • Lehmann, U. and Robin, F. (2007). Slowly digestible starch—its structure and health implications: A review. Trends Food Sci. Tech. 18:346–355.
  • Leterme, P., Souffrant, W. B. and Thewis, A. (2000). Effect of barley fibres and barley intake on the ileal endogenous nitrogen losses in piglets. J. Cereal Sci. 31:229–239.
  • Lindeboom, N., Chung, P. R. and Tyler, R. T. (2004). Analytical, biochemical and physicochemical aspects of starch granule size with emphasis on small granule starches. Starch. 56:89–99.
  • Liu, B., McKinnon, J. J., Thacker, P. and Yu, P. (2012). Molecular structure and metabolic characteristics of the proteins and energy in triticale grains and dried distillers grains with solubles for dairy cattle. J. Agric. Food Chem. 60:10064–10074.
  • Liu, N. and Yu, P. (2010). Characterize microchemical structure of seed endosperm within a cellular dimension among six barley varieties with distinct degradation kinetics, using ultraspatially resolved synchrotron-based infrared microspectroscopy. J. Agric. Food Chem. 58:7801–7810.
  • Liu, N. and Yu, P. (2011). Molecular clustering, interrelationships and carbohydrate conformation in hull and seeds among barley cultivars. J. Cereal Sci. 53:379–383.
  • Lowry, V. K., Farnell, M. B., Ferro, P. J., Swaggerty, C. L., Bahl, A. and Kogut, M. H. (2005). Purified beta-glucan as an abiotic feed additive up-regulates the innate immune response in immature chickens against Salmonella enterica serovar Enteritidis. Int. J. Food Microbiol. 98:309–318.
  • Lyly, K., Salmenkallio-Marttila, M., Suortti, T., Autio, K., Poutanen, K. and Lahteenmaki, L. (2003). Influence of oat β-D-glucan preparations on the perception of mouthfeel and rheological properties in beverage prototypes. Cereal Chem. 80:536–541.
  • MacGregor, A. W. and Fincher, G. B. (1993). Carbohydrates of the barley grain. In: Barley: Chemistry and Technology, pp. 73–130. MacGregor, A. W. and Bhatty, R. S., Eds., American Association of Cereal Chemists, St. Paul, MN.
  • MacLeod, A. L., Edney, M. J. and Izydorczyk, M. S. (2012). Quality of Western Canadian Malting Barley. Canadian Grain Commission, Winnipeg, Manitoba. ISSN 1182–4417: 1–20.
  • Maki, K. C., Davidson, M. H., Witcher, M. S., Dicklin, M. R. and Subbaiah, P. V. (2007). Effects of high-fiber oat and wheat cereals on postprandial glucose and lipid responses in healthy men. Intl. J. Vitamin Nutri. Res. 77:347–356.
  • Martin, A. A., Carter, R. A. B., de Oliveira Nunes, L., Arisawa, E. A. L. and Silveira Jr, L. (2004). Principal components analysis of FT-Raman spectra of ex vivo basal cell carcinoma. In: Biomedical Vibrational Spectroscopy and Biohazard Detection Technologies, Vol. 5321, pp. 198–204. Mahadevan-Jansen, A., Sowa, M. G., Puppels, G. J., Gryczynski, Z., Vo-Dinh, T. and Lakowicz, J. R., Eds., SPIE, San Jose, CA.
  • Martin, C. (2012). Figures. Representative partial structures of amylose and amylopectin. Web: Water structure and science. Available from http://www.lsbu.ac.uk/water/hysta.html. Accessed August 8, 2012.
  • Mauer, L. J., Chernyshova, A. A., Hiatt, A., Deering, A. and Davis, R. (2009). Melamine detection in infant formula powder using near- and mid-infrared spectroscopy. J Agric. Food Chem. 57:3974–3980.
  • McAllister, T. A. and Cheng, K. J. (1996). Microbial strategies in the ruminal digestion of cereal grains. Anim. Feed Sci. Technol. 62:29–36.
  • McAllister, T. A., Phillippe, R. C., Rode, L. M. and Cheng, K. J. (1993). Effects of the protein matrix on the digestion of cereal grains by ruminal microorganisms. J. Anim. Sci. 71:205–212.
  • McCluskey, M. D. (2000). Local vibrational modes of impurities in semiconductors. J. Appl. Phys. 87:3593–617.
  • Mehrez, A. Z. and Ørskov, E. R. (1977). A study of the artificial fiber bag technique for determining the digestibility of feeds in the rumen. J. Agric. Sci. (Cambridge), 88:645–650.
  • Metcalfe, D. R. (1995). Barley. In: Harvest of Gold, pp. 82–97. Slinkcard, A. E. and Knott, D. R., Eds., University Extension Press, University of Saskatchewan, Saskatoon, SK.
  • Miller, L. M., Carlson, C. S., Carr, G. L. and Chance, M. R. (1998). A method for examining the chemical basis for bone disease: Synchrotron Infrared Microspectroscopy. Cell. Mol. Biol. 44:117–127.
  • Mills, J. A. N., France, J. and Dijkstra, J. (1999). A review of starch digestion in the lactating dairy cow and proposals for a mechanistic model: 1. Dietary starch characterisation and ruminal starch digestion. Anim. Feed Sci. Technol. 8:291–340.
  • Missct, S. (1996). Enzymes in action. World's Poult. Sci. J. 12:62–73.
  • Miura, N. N., Ohno, N., Aketagawa, J., Tamura, H., Tanaka, S. and Yadomae, T. (1996). Blood clearance of beta-1,3-d-glucan in MRL lpr/lpr mice. FEMS Immunol. Med. Microbiol. 13:51–57.
  • National Research Council. (1989). Nutrient Requirements of Dairy Cattle. 6th Rev. ed. National Academy Press, Washington, DC.
  • National Research Council. (1996). Nutrient Requirements of Beef Cattle. 7th Rev. ed. National Academy Press, Washington, DC.
  • National Research Council. (2001). Nutrient Requirements of Dairy Cattle. 7th Rev. ed. National Academy Press, Washington, DC.
  • Naumann, D., Fabian, H. and Lasch, P. (2009). FTIR spectroscopy of cells, tissues and body fluids. In: Biological and Biomedical Infrared Spectroscopy, pp. 312–354. Barth, A. and Haris, P. I., Eds., IOS Press BV, Amsterdam, the Netherlands.
  • Newman, C. W. and Newman, R. K. (1992). Characteristics of the ideal barley for feed. Barley research reviews 1986–91. In: Barley Genetics VI Session and Workshops Summaries, II, pp. 925–939, Munksgaard International Publishers, Copenhagen, Denmark.
  • Nilsson, U., Johansson, M., Nilssson, A., Björck, I. and Nyman, M. (2008). Dietary supplementation with beta-glucan enriched oat bran increases faecal concentration of carboxylic acids in healthy subjects. European J. Clinical Nutri. 62:978–984.
  • Nuez-Ortín, W. G. and Yu, P. 2010a. Effects of bioethanol plant and co-products type on the metabolic characteristics of the proteins. J. Dairy Sci. 93:3775–3783.
  • Nuez-Ortín, W. G. and Yu, P. 2010b. Estimation of ruminal and intestinal digestion profiles, hourly degradation ratio and potential nitrogen to energy synchronization of co-products of bioethanol production. J. Sci. Food Agric. 90:2058–2067.
  • Nuez-Ortín, W. G. and Yu, P. (2011). Comparison of the NRC 2001 model with the DVE/OEB system in modeling the metabolic characteristics of the proteins in dairy cattle from new co-products from bio-ethanol processing. J. Sci. Food Agric. 91:405–411.
  • Oates, C. G. (1997). Towards an understanding of starch granule structure and hydrolysis. Trends Food Sci. Tech. 8:375–382.
  • Offner, A., Bach, A. and Sauvant, D. (2003). Quantitative review of in situ starch degradation in the rumen. Anim. Feed Sci. Technol. 106:81–93.
  • Ørskov, E. R. (2000). The in situ technique for the estimation of forage degradability in ruminants. In: Forage Evaluation in Ruminant Nutrition, pp. 175–188. Given, D. I., Owens, E., Axford, R. F. E. and Omed H. M., Eds., CAB International, Wallingford, Oxon, UK.
  • Ørskov, E. R., Hovell, F. D., De, B. and Mould, F. (1980). The use of the nylon bag technique for the evaluation of feedstuffs. Trop. Anim. Prod. 5:195–213.
  • Ørskov, E. R. and McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. (Cambridge) 92:499–503.
  • Oscarsson, M., Parkkoen, T., Auto, K. and Aman, P. (1997). Composition and microstructure of normal, waxy and high-amylose barley samples. J. Cereal Sci. 26:259–264.
  • Peng, Q., Wang, Z., Zhang, X. and Yu, P. (2013). Common prairie feeds with different soluble and insoluble fractions used for CPM diet formulation in dairy cattle: Impact of carbohydrate-protein matrix structure on protein and other primary nutrient digestion. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 121:14–22.
  • Pieper, R., Jha, R., Rossnagel, B., Van Kessel, A. G., Souffrant, W. B. and Leterme, P. (2008). Effect of barley and oat cultivars with different carbohydrate compositions on the intestinal bacterial communities in weaned piglets. FEMS Microbiol. Ecol. 66:556–566.
  • Quin, J. I., Van Der Wath, J. G. and Myburgh, S. (1938). Studies on the alimentary canal of Merino sheep in South Africa 4. Description of experimental technique. J. Vet. Sci. Anim. Industry (Onderstepoort). 11:341–360.
  • Robinson, P. H., Fadel, J. G. and Tamminga, S. (1986). Evaluation of mathematical models to describe neutral detergent residue in terms of its susceptibility to degradation in the rumen. Anim. Feed Sci. Technol. 15:249–271.
  • Russell, J. B., O'Connor, J. D., Fox, D. G., Van Soest, P. J. and Sniffen, C. J. (1992). A net carbohydrate and protein system for evaluating cattle diets. I. Ruminal fermentation. J. Anim. Sci. 70:3551–3561.
  • Santos, C., Fraga, M. E., Kozakiewicz, Z. and Lima, N. (2010). Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts. Res. Microbiol. 161:168–175.
  • Shon, M., Himmelsbach, D. S., Barton II, F. E., Griffey, C. A., Brooks, W. S. and Hicks, K. B. (2007). Near-infrared analysis of ground barley for use as a feedstock for fuel ethanol production. Appl. Spectrosc. 61:1178–1183.
  • Sinclair, L. A., Garnsworthy, P. C., Newbold, J. R. and Buttery, P. J. (1993). Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in sheep. J Agric. Sci. 120:251–263.
  • Singh, J., Dartois, A. and Kaur, L. (2010). Starch digesetibily in food matrix: A review. Trends Food Sci. Technol. 21:168–180.
  • Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G. and Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. J. Anim. Sci. 70:3562–3577.
  • Stuart, B. (2004). Infrared Spectroscopy: Fundamentals and Applications. John Wiley, Chichester, UK.
  • Svihus, B., Uhlen, A. K. and Harstad, O. M. (2005). Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim. Feed Sci. Technol. 122:303–320.
  • Tamminga, S., Brandsma, G. G., Dijkstra, J., Van Duinkerken, G., Van Vuuren, A. M. and Blok, M. C. (2007). Protein Evaluation for Ruminants: The DVE/OEB 2007 System. CVB documentation report. Centraal Veevoeder Bureau, Lelystad, the Netherlands.
  • Tamminga, S. and Jansman, A. J. M. (1993). Animal Nutrition, Williams, B. A., Ed., Wageningen Agricultural University, The Netherlands.
  • Tamminga, S., Van Straalen, W. M., Subnel, A. P. J., Meijer, R. G. M., Steg, A., Wever, C. J. G. and Block, M. C. (1994). The Dutch protein evaluation system: The DVE/OEB system. Livestock Prod. Sci. 40:139–155.
  • Tamminga, S., van Vuuren, A. M., van der Koelen, C. J., Ketelaar, R. S. and van der Togt, P. L. (1990). Ruminal behavior of structural carbohydrates, non-structural carbohydrates and crude protein from concentrate ingredients in dairy cows. Netherlands J. Agric. Sci. 38:513–526.
  • Tester, R. F., Qi, X. and Karkalas, J. (2006). Hydrolysis of native starches with amylases. Animal Feed Sci. Tech. 130:39–54.
  • Thomason, W. E., Brooks, W. S., Griffey, C. A. and Vaughn, M. E. (2009). Hulless barley seeding rate effects on grain yield and yield components. Crop Sci. 49:342–346.
  • Tylutki, T. P., Fox, D. G., Durbal, V. M., Tedeschi, L. O., Russell, J. B., Van Amburgh, M. E., Overton, T..R., Chase, L..E. and Pell, A..N. (2008). Cornell Net Carbohydrate and Protein System: A model for precision feeding of dairy cattle. Anim. Feed Sci. Technol. 143:174–202.
  • Tylutki, T. P., Fox, D. G. and McMahon, M. (2004). Implementation of nutrient management planning on a dairy farm. Profess. Anim. Sci. 20:58–65.
  • Tyrrell, H. F. and Moe, P. W. (1975). Effect of intake on digestive efficiency. J. Dairy Sci. 58:1151–1163.
  • Ullrich, S. E. (2011). Barley: Production, Improvement, and Uses. Wiley-Blackwell, Ames, IA.
  • Ullrich, S. E., Clancy, J. A., Eslick, R. F. and Lance, R. (1986). β-Glucan content and viscosity of the extract from barley. J. Cereal Sci. 4:279–285.
  • Van Soest, P. J., Sniffen, C. J., Mertens, D. R., Fox, D. G., Robinson, P. H. and Krishnamoorthy, U. C. (1981). A net protein system for cattle: The rumen submodel for nitrogen. In: Protein Requirements for Cattle: Proceedings of an International Symposium. Owens, F. N., Ed., Division of Agriculture, Oklahoma State University, Stillwater, OK. MP-109: 265.
  • Vanzant, E. S., Cochran, R. C. and Titgemeyer, E. C. (1998). Standardization of in situ techniques for ruminant feedstuffs evaluation. J. Anim. Sci. 76:2717–2729.
  • Vasiljevic, T., Kealy, T. and Mishra, V. K. (2007). Effects of beta-glucan addition to a probiotic containing yogurt. J. Food Sci. 72:C405–C411.
  • von Bothmer, R. and Komatsuda, T. (2011). Barley origin and related species. In: Barley: Production, Improvement, and Uses, pp. 14–62. Ullrich, S. E., Ed., Wiley-Blackwell, Ames, IA.
  • Weiss, W. P., Conrad, H. R. and Pierre, N. R. S. (1992). A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Anim. Feed Sci. Technol. 39:95–110.
  • Wetzel, D. L., Srivarin, P. and Finney, J. R. (2003). Revealing protein infrared spectral detail in a heterogeneous matrix dominated by starch. Vib. Spectrosc. 31:109–114.
  • White, W. B., Bird, H. R., Sunde, M. L., Marlett, J. A., Prentice, N. A. and Burger, W. C. (1983). Viscosity of β-D-glucan as a factor in the enzymatic improvement of barley for chicks. Poult. Sci. 62:853–862.
  • Xin, H., Falk, K..C. and Yu, P. (2013a). Studies on Brassica carinata seed. Part I: Protein molecular structure in relation to protein nutritive values and metabolic characteristics. J. Agric. Food Chem. 61:10118–10126
  • Xin, H., Falk, K..C. and Yu, P. (2013b). Studies on Brassica carinata seed. Part II: Carbohydrate molecular structure in relation to carbohydrate chemical profile, energy values and biodegradation characteristics. J. Agric. Food Chem. 61:10127–10134.
  • Yang, L., Christensen, D. A., McKinnon, J. J., Beattie, A. D. and Yu, P. (2013a). Effect of altered carbohydrate traits in hulless barley (Hordeum vulgare L.) on nutrient profiles and availability and nitrogen to energy synchronization. J. Cereal Sci. (UK). 58:182–190.
  • Yang, L., Christensen, D. A., McKinnon, J. J., Beattie, A. D. and Yu, P. (2013b). Predicted truly absorbed protein supply from hulless barley (Hordeum vulgare L.) with altered carbohydrate traits. J. Cereal Sci. 58:372–379.
  • Yang, L., Christensen, D. A., McKinnon, J. J., Beattie, A. D., Xin, H. and Yu, P. (2013c). Investigating the molecular structure features of hulless barley (Hordeum vulgare L.) in relation to metabolic characteristics using synchrotron-based Fourier transform infrared microspectroscopy. J. Agri. Food Chem. 61:11250–11260.
  • Yang, L., Christensen, D. A., McKinnon, J. J., Beattie, A. D. and Yu, P. (2014). Characterizing the molecular structure features of hulless barley (Hordeum vulgare L.) in relation to nutreient utilization and availability. J. Cereal Sci. 60:48–59.
  • Yang, W. Z., Beauchemin, K. A., Farr, B. I. and Rode, L. M. (1997). Comparison of barley, hull-less barley, and corn in the concentrate of dairy cows. J. Dairy Sci. 80:2885–2895.
  • Yu, P. (2004). Application of advanced synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy to animal nutrition and feed science: A novel approach. Br. J. Nutr. 92(6):869–885.
  • Yu, P. (2005a). Prediction of protein supply to ruminants from concentrates: Comparison of the NRC-2001 model with the DVE/OEB system. J. Sci. Food Agric. 85:527–538.
  • Yu, P. (2005b). Applications of cluster analysis (CLA) and principal component analysis (PCA) in feed structure and feed molecular chemistry research, using synchrotron-based FTIR microspectroscopy. J. Agric. Food Chem. 53:7115–7127.
  • Yu, P. (2006a). Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions. Spectroscopy. 20:229–251.
  • Yu, P. (2006b). An emerging method for rapid characterization of feed structures and feed component matrix at a cellular level and relation to feed quality and nutritive value. Arch. Anim. Nutr. 60:229–244.
  • Yu, P. (2007). Molecular chemical structure of barley protein revealed by ultra-spatially resolved synchrotron light sourced FTIR microspectroscopy: Comparison of barley varieties. Biopolymers. 85:308–317.
  • Yu, P. (2010). Plant-based food and feed protein structure changes induced by gene-transformation, heating and bio-ethanol processing: A synchrotron-based molecular structure and nutrition research program. Mol. Nutr. Food Res. 54:1535–1545.
  • Yu, P. (2012). Board Invited Review: Sensitivity and responses of functional groups to feed processing on a molecular basis. J. Anim. Sci. Biotechnol. 3:40.
  • Zhang, B., Guo, Y. and Wang, Z. (2008). The modulating effect of β-1,3/1,6-glucan supplementation in the diet on performance and immunological responses of broiler chickens. Asian-Aust. J. Anim. Sci. 21:237–244.
  • Zhang, X. and Yu, P. (2012a). Using ATR-FT/IR molecular spectroscopy to detect effects of blend DDGS inclusion level on the molecular structure spectral and metabolic characteristics of the proteins in hulless barley. Spectrochim. Acta A:Mol. Biomol. Spectrosc. 95:53–63.
  • Zhang, X. and Yu, P. (2012b). Differentiation of mixtures of co-product blend with barley grain based on Fourier transform infrared attenuated total reflection molecular spectroscopy: Carbohydrate molecular structure spectral profiles and nutritive characteristics in dairy cattle. J. Dairy Sci. 95:6624–6634.
  • Zheng, G. H., Rossnagel, B. G., Tyler, R. T. and Bhatty, R. S. (2000). Distribution of β-glucan in the grain of hull-less barley. Cereal Chem. 77:140–144.
  • Zhu, H., Pei, X., Wu, L., Liu, B., Qi, Z. and Wang, Y. (2012). Synchrotron FTIR microspectroscopy study of the striatum in 6-hydroxydopamine rat model of Parkinson's disease. Spectroscopy: Intl. J., 27:229–238.
  • Zinn, R. A., Montano, M. and Shen, Y. (1996). Comparative feeding value of hulless vs covered barley for feedlot cattle. J. Anim. Sci. Anim. Sci. 74(6):1187–1193.
  • Zobel, H. F. (1988). Molecules to granules: A comprehensive starch review. Starch/Staerke 40(2): 44–50.
  • Zotti, M., Ferroni, A. and Calvini, P. (2008). Microfungal biodeterioration of historic paper: Preliminary FTIR and microbiological analyses. Int. Biodet. Biodegr. 62:186–194.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.