1,070
Views
34
CrossRef citations to date
0
Altmetric
Articles

Adhesion of Lactobacilli and their anti-infectivity potential

, , , , , , & show all

References

  • Aattour, N., Bouras, M., Tome, D., Marcos, A. and Lemonnier, D. (2002). Oral ingestion of lactic-acid bacteria by rats increases lymphocyte proliferation and interferon-gamma production. Br. J. Nutr. 87:367–373.
  • Adlerberth, I. S., Ahrne, M. L., Johansson, G. and Molin, L. A. (1996). A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl. Environ. Microbiol. 62:2244–2251.
  • Aleksandra, D. C., Tomasz, T. and Mateusz, S. (2008). The effect of antioxidants on Lactobacillus casei culture. Acta. Sci. Pol. Technol. Aliment. 7:39–51.
  • Aleljung, P., Paulsson, M., Emody, L., Andersson, M., Naidu, A. S. and Wadstrom, T. (1991). Collagen binding by Lactobacilli. Curr. Microbiol. 23:33–38.
  • Aleljung, P., Shen, W., Rozalska, B., Hellman, U., Ljungh, A. and Wadström, T. (1994). Purification of collagen-binding proteins of Lactobacillus reuteri NCIB 11951. Curr. Microbiol. 28:231–236.
  • Asahara, T., Shimizu, K., Takada, T., Kado, S., Yuki, N., Morotomi, M., Tanaka, R. and Nomoto, K. (2010). Protective effect of Lactobacillus casei strain Shirota against lethal infection with multi-drug resistant Salmonella enterica serovar Typhimurium DT104 in mice. J. Appl. Microbiol. 110:163–173.
  • Avadhanula, V., Rodriguez, C. A. and Devincenzo, J. P. (2006). Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species- and cell type-dependent manner. J. Virol. 80:1629–1636.
  • Axelsson, L. (1998). Lactic acid bacteria: Classification and physiology. In: Lactic Acid Bacteria: Microbiology and Functional Aspects, 2nd edn., eds. Salminen, S. and Wright, A. V., pp. 1–72. New York: Marcel Dekker.
  • Azcarate-Peril, M. A., McAuliffe, O., Altermann, E., Lick, S., Russell, W. M. and Klaenhammer, T. R. (2005). Microarray analysis of two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl. Environ. Microbiol. 171:5794–5804.
  • Backhed, L. R. E., Sonnenburg, J. L., Peterson, D. A. and Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science. 307:1915–1920.
  • Bech-Larsen, T. and Scholderer, J. (2007). Functional foods in Europe: Consumer research, market experiences and regulatory aspects. Trends Food Sci. Technol. 18:231–234.
  • Bell, S. L., Xu, G. and Forstner, J. F. (2001). Role of the cysteine-knot motif at the C-terminus of rat mucin protein Muc2 in dimer formation and secretion. J. Biochem. 357:203–209.
  • Bernet, M. F., Brassar, D., Neeser, J. R. and Servin, A. L. (1994). Lactobacillus acidophilus LA1 binds to cultured human intestinal cell lines and inhibits cell-attachment and cell invasion by enterovirulent bacteria. Gut. 35:483–489.
  • Berrada, N., Leneland, J. E., Laroche, G., et al. (1991). Bifidobacterium from fermented milk: Survival during gastric transit. J. Dairy Sci. 74:409–413.
  • Boekhorst, J., Wels, M., Kleerebezem, M. and Siezen, R. J. (2006). The predicted secretome of Lactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology. 152:3175–3183.
  • Boot, H. J., Kolen, C. P., Noort, J. M. and Pouwels, P. H. (1993). S-layer protein of Lactobacillus acidophilus ATCC4356: Purification, expression in Escherichia coli, and nucleotide sequence of the corresponding gene. J. Bacteriol. 175:6089–6096.
  • Boot, H. J., Kolen, C. P., Pot, B., Kersters, K. and Pouwels, P. H. (1996). The presence of two S-layer protein encoding genes is conserved among species related to Lactobacillus acidophilus. Microbiology. 142:2375–2384.
  • Boureau, H., Hartmann, L., Karjalainen, T., Rowland, I. and Wilkinson, H. F. (2000). Models to study colonisation and colonisation resistance. Micro. Ecol. Health Dis. 12:247–258.
  • Bouzaine, T., Dauphin, R. D., Thonart, P. H., Urdaci, M. C. and Hamdi, M. (2005). Adherence and colonization properties of Lactobacillus rhamnosus TB1, a broiler chicken isolate. Lett. App. Microbiol. 40:391–396.
  • Cachat, E. and Priest, F. G. (2005). Lactobacillus suntoryeus sp. Nov., isolated from malt whisky distilleries. Int. J. Syst. Evol. Microbiol. 55:31–34.
  • Callegari, M. L., Riboli, B., Sanders, J. W., Coccocelli, P. S., Kok, J., Venema, G. and Morelli, L. (1998). The S-layer gene of Lactobacillus helveticus CNRZ 892: Cloning, sequence, and heterologous expression. Microbiology. 144:719–726.
  • Cao, S. Y., Wang, M. S., Cheng, A. C., Qi, X. F. and Yang, X. Y. (2008). Comparative analysis of intestinal microbial community diversity between healthy and oraly infected ducklings with salmonella enteritidis by ERIC-PCR. World J. Gastroenterol. 14:1120–1125.
  • Chao, H., Tomii, Y., Watanab, K. and Tsai, Y. (2008). Diversity of lactic acid bacteria in fermented brines used to make stinky tofu. Int. J. Food Microbiol. 123:134–141.
  • Chen, X., Yang, C., Xiaoliang, L., Ning, C. and Weihuan, F. (2009). Characterization of surface layer proteins in Lactobacillus crispatus isolate ZJ001. J. Microbiol. Biotechnol. 19:1176–1183.
  • Chou, L. S. and Weimer, B. (1999). Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J. Dairy Sci. 82:23–31.
  • Christie, J., McNab, R. and Jenkinson, H. F. (2002). Expression of fibronectin-binding protein FbpA modulates adhesion in streptococcus gordonii. Microbiology. 148:1615–1625.
  • Coconnier, M. H., Klaenhammer, T. R., Kerneis, S., Bernet, M. F. and Servin, A. L. (1992). Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture. Appl. Environ. Microbiol. 58:2034–2039.
  • Collado, M. C., Meriluoto, J. and Salminen, S. (2007). Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett. Appl. Microbiol. 45:454–460.
  • Conway, P. L., Gorbach, S. L. and Goldin, B. R. (1987). Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70:1–12.
  • Cover, T. L. and Aber, R. C. (1989). Yersinia enterocolitica. N. Engl. J. Med. 321:16–24.
  • Crater, J. S. and Carrier, R. L. (2010). Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol. Biosci. 10:1473–1483.
  • Cukrowska, B., Rosiak, I., Klewicka, E., Motyl, I., Schwarzer, M., Libudzisz, Z. and Kozakova, H. (2010). Impact of heat-inactivated Lactobacillus casei and Lactobacillus paracasei strains on cytokine responses in whole blood cell cultures of children with atopic dermatitis. Folia Microbiol. (Praha.) 55:277–280.
  • Deepika, G. and Charalampopoulos, D. (2010). Surface and adhesion properties of Lactobacilli. Adv. Appl. Microbiol. 70:127–152.
  • De Leeuw, E., Li, X. and Lu, W. Y. (2006). Binding characteristics of the Lactobacillus brevis ATCC 8287 surface layer to extracellular matrix proteins. FEMS Microbiol. Letts. 260:210–215.
  • De Roos, N. M. and Katan, M. B. (2000). Effects of probiotic bacteria on diarrhoea, lipid metabolism, and carcinogenesis: A review of papers published between 1988 and 1998. Am. J. Clin. Nutr. 71:405–411.
  • Dicks, L. M. T. and Van Vuuren, H. J. J. (1987). Relatedness of heterofermentative Lactobacillus species revealed by numerical analysis of total soluble protein patterns. Int. J. Syst. Bacteriol. 37:437–440.
  • Dodd, H. M. and Gasson, M. J. (1994). Bacteriocins of lactic acid bacteria. In: Genetics and Biotechnology of Lactic Acid Bacteria, pp. 211–251. Gasson, M. J. and de Vos, W. M., Eds., Blackie Acad. and Profess, Glasgow, UK, Springer, Netherlands.
  • Drasar, B. S. and Barrow, P. A. (1985). Intestinal Microbiology. American Society for Microbiology, Washington, DC.
  • Duary, R. K., Batish, V. K. and Grover, S. (2010). Expression of the atpD gene in probiotic Lactobacillus plantarum strains under in vitro acidic conditions using RT-qPCR. Res. Microbiol. 161:399–405.
  • Duary, R. K., Batish, V. K. and Grover, S. (2012a). Relative gene expression of bile salt hydrolase and surface proteins in two putative indigenous Lactobacillus plantarum strains under in vitro gut conditions. Mol. Biol. Rep. 39(3):2541–2552.
  • Duary, R. K., Bhausaheb, M. A., Batish, V. K. and Grover, S. (2012b). Anti-inflammatory and immunomodulatory efficacy of indigenous probiotic Lactobacillus plantarum Lp91 in colitis mouse model. Mol. Biol. Rep. 39(4):4765–4775.
  • Duary, R. K., Rajput, Y. S., Batish, V. K. and Grover, S. (2011). Assessing the adhesion of putative indigenous probiotic Lactobacilli to human colonic epithelial cells. Indian J. Med. Res. 134:664–671.
  • Duncan, S. H., Louis, P. and Flint, H. J. (2007). Cultivable bacterial diversity from the human colon. Lett. Appl. Microbiol. 44:343–350.
  • Dunne, C. L., Murphy, S., Flynn, L., O'Mahoney, S., O'Halloran, M., Feeney, D., Morrissey, G., Thornton, G. and Fitzgerald, C. (1999). Probiotics from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Ant. V. Leeuwenhoek. 76:279–292.
  • Elmer, G. W., Surawicz, C. M. and McFarland, L. V. (1996). Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. J. Am. Med. Assoc. 275:870–876.
  • FAO/WHO. (2009). Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food London. WHO, Ontario, Canada.
  • Fessler, J. H. and Fessler, L. I. (1978). Biosynthesis of collagens. Ann. Rev. Biochem. 47:129–162.
  • Floch, M. H., Binder, H. J., Filburn, B. and Gershengoren, W. (1972). The effect of bile acids on intestinal microflora. Am. J. Clin. Nutr. 25:1418–1426.
  • Fooks, L. J., Fuller, R. and Gibson, G. R. (1999). Prebiotics, probiotics and human gut microbiology. Int. J. Dairy. 9:53–61.
  • Forouhandeh, H., Vahed, Z. S., Hejazi, M. S., Nahaei, M. R. and Dibavar, M. K. (2010). Isolation and phenotypic characterization of Lactobacillus species from various dairy products. Curr. Res. Bacteriol. 3:84–88.
  • Fritz, J. V., Desai, M. S., Shah, P., Schneider, J. G. and Wilmes, P. (2013). From meta-omics to causality: Experimental models for human microbiome research. Microbiome. 14:2049–2618.
  • Fuller, R. (1989). Probiotics in man and animals. J. Appl. Bacteriol. 66:365–378.
  • Gatti, M., Rossetti, L., Fornasari, M. E., Lazzi, C., Giraffa, G. and Neviani, E. (2005). Heterogeneity of putative surface layer proteins in Lactobacillus helveticus. Appl. Environ. Microbiol. 71:7582–7588.
  • Geertsema, F. I., Van der Mei, H. C. and Busscher, H. J. (1993). Microbial cell surface hydrophobicity. The involvement of electrostatic interactions in microbial adhesion to hydrocarbons (MATH). J. Microbiol. Method. 18:61–68.
  • Goldin, B. R., Gorbach, S. L., Saxelin, M., Barakat, M., Gualtieri, L. and Salminen, S. (1992). Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig. Dis. Sci. 37:121–128.
  • Golowczyc, M. A., Mobili, P., Garrote, G. L., Abraham, A. G. and De Antoni, G. L. (2007). Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis. Int. J. Food Microbiol. 118:264–273.
  • Granato, D., Perotti, F., Masserey, I., Rouvet, M., Golliard, M., Servin, A. and Brassart, D. (1999). Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human eneterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 65:1071–1077.
  • Grasset, E., Pinto, M., Dussaulx, E., Zweibaum, A. and Desjeux, J. F. (1984). Epithelial properties of human colonic carcinoma cell line Caco-2: Electrical parameters. Am. J. Physiol. 247:260–267.
  • Greene, J. D. and Klaenhammer, T. R. (1994). Factors involved in adherence of Lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 60:4487–4494.
  • Grover, S., Kumar, A., Srivastava, A. K. and Batish, V. K. (2012b). Probiotics as functional food ingredients for augmenting human health. In: Innovation in Healthy and Functional Foods, pp. 387–417, CRC Press, Boca Raton, FL.
  • Guarner, F. (2007). Studies with inulin-type fructans on intestinal infections, permeability, and inflammation. J. Nutr. 137:2568–2571.
  • Guarner, F. and Malagelada, J. R. (2003). Gut flora in health and disease. Lancet. 361:512–519.
  • Hagen, K. E., Guan, L. L., Tannock, G. W., Korver, D. R. and Allison, G. E. (2005). Detection, characterization, and in vitro expression of genes encoding S-proteins in Lactobacillus gallinarum strains isolated from chicken crops. Appl. Environ. Microbiol. 71:6633–6643.
  • Haller, D., Blum, S., Bode, C., Hammes, W. P. and Schiffrin, E. J. (2000). Activation of human peripheral blood mononuclear cells by nonpathogenic bacteria in vitro: Evidence of NK cells as primary targets. Infect. Immun. 68:752–759.
  • Halliwell, B. and Chirico, S. (1993). Lipid peroxidation, its mechanism, measurement and significance. J. Clin. Nutr. 57:715–725.
  • Hammerschmidt, S. I., Ahrendt, M., Bode, U., Wahl, B., Kremmer, E., Forster, R. and Pabst, O. (2008). Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J. Experi. Med. 205:2483–2490.
  • Harty, D. W. S., Oakey, H. J., Patrikakis, M., Hume, E. B. H. and Knox, K. W. (1994). Pathogenic potential of Lactobacilli. Int. J. Food Microbiol. 24:179–189.
  • Harty, D. W. S., Patrikakis, M. and Knox, K. W. (1993). Identification of Lactobacillus strains isolated from patients with infective endocarditis and comparison of their surface-associated properties with those of other strains of the same species. Microb. Ecol. Health Dis. 6:191–201.
  • Hatakka, K., Ahola, A. J., Yli-Knuuttila, H., Richardson, M., Poussa, T., Meurman, J. H. and Korpela, R. (2007). Probiotics reduce the prevalence of oral candida in the elderly: A randomized controlled trial. J. Dent. Res. 86:125–130.
  • Havenaar, R. and Huis Veld, M. J. H. (1992). Probiotics: A general view. In: Lactic Acid Bacteria in Health and Disease, Vol. 1, pp. 151–170. Wood, J. B. J., Ed., Elsevier Applied Science, Amsterdam, Netherlands.
  • Heczko, P. B. (2007). Treatment of acute infectious diarrhoea in infants and children with a mixture of three Lactobacillus rhamnosus strains – A randomized, double-blind, placebo-controlled trial. Aliment. Pharmacol. Therap. 23:247–253.
  • Hill, M. J. and Draser, B. S. (1968). Degradation of bile salts by human intestinal bacteria. Gut. 9:22–27.
  • Hoffman, A. F., Molino, G., Milanese, M. and Belforte, G. (1983). Description and stimulation of a physiological pharmokinetic model for the metabolism and enterohepatic circulation of bile acids in man. J. Clin. Invest. 71:1003–1022.
  • Holzapfel, W. H., Haberer, P., Snel, J., Schillinger, U. and Huis, J. H. (1998). Overview of gut flora and probiotics. Int. J. Food Microbiol. 41:85–101.
  • Horie, M., Ishiyama, A., Fujihira-Ueki, Y., Sillanpaa, J., Korhonen, T. K. and Toba, T. (2002). Inhibition of the adherence of Escherichia coli strains to basement membrane by Lactobacillus crispatus expressing an S-layer. J. Appl. Microbiol. 92:396–403.
  • Howard, J. C., Heinemann, C., Thatcher, B. J., Martin, B., Gan, B. S. and Reid, G. (2000). Identification of collagen-binding proteins in Lactobacillus spp. with surface-enhanced laser desorption/ionization–time of flight protein chip technology. Appl. Environ. Microbiol. 66:4396–4400.
  • Huang, Y. and Adams, M. C. (2003). An in vitro model for investigating intestinal adhesion of potential dairy propionibacteria probiotic strains using cell line C2BBe1. Lett. Appl. Microbiol. 36:213–216.
  • Hudault, S., Lievin, V., Bernet-Camard, M. F. and Servin, A. L. (1997). Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection. Appl. Environ. Microbiol. 63:513–518.
  • Hultgren, S. J., Abraham, S. N. and Normark, S. (1991). Chaperone-assisted assembly and molecular architecture of adhesive pili. Ann. Rev. Microbiol. 45:383–315.
  • Hylemon, P. B. and Glass, T. L. (1983). Biotransformation of bile acids and cholesterol by the intestinal microflora. In: Human Intestinal Microflora in Health and Disease, pp. 189–113. Hentges, D. J., Ed., Academic Press, New York, NY.
  • Ingegerd, A., Siv, A., Marie, L. J., Goran, M., Lars, A. H. and Agnes, E. W. (1996). A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl. Environ. Microbiol. 62:2244–2251.
  • Jaaskelainen, S., Hynonen, U. and Ilk, N. (2008). Identification, characterization of domains responsible for self-assembly, cell wall binding of the surface layer protein of Lactobacillus brevis ATCC 8287. BMC Microbiol. 8:165–170.
  • Jack, R. W., Tagg, J. R. and Ray, B. (1995). Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59:171–200.
  • Jain, S., Yadav, H. and Sinha, P. R. (2009). Antioxidant and cholesterol assimilation activities of selected Lactobacilli and Lactococci cultures. J. Dairy Res. 76:385–391.
  • Jakava, V. M., Avall Jaaskelainen, S., Messner, P., Sleytr, U. B. and Palva, A. (2002). Isolation of three new surface layer protein genes (slp) from Lactobacillus brevis ATCC 14869 and characterization of the change in their expression under aerated and anaerobic conditions. J. Bacteriol. 184:6786–6795.
  • Jason, M. R., Dae-Joong, K. and Phillip, B. H. (2005). Bile salt biotransformations by human intestinal bacteria. J. Lipid. Res. 47:241–259.
  • Jia, Y., Persson, C., Hou, L., Zheng, Z., Yeager, M., Lissowska, J., Chanock, S. J., Chow, W. H. and Ye, W. (2010). A comprehensive analysis of common genetic variation in MUC1, MUC5AC, MUC6 genes and risk of stomach cancer. Canc. Caus. Contr. 21:313–321.
  • Johnson, H. K. C., Hagen, K. E., Gordonpour, M., Tompkins, T. A. and Sherman, P. M. (2007). Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells. Cell Microbiol. 9:356–367.
  • Johnson, J. L., Phelps, C. F., Cummins, C. S., London, J. and Gasser, F. (1980). Taxonomy of the Lactobacillus acidophilus group. Int. J. Syst. Bacteriol. 30:53–68.
  • Kaizu, H., Saski, M., Nakajima, H. and Suzyki, Y. (1993). Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 76:2493–2499.
  • Kankainen, M., Paulin, L., Tynkkynen, S., von Ossowski, I., Reunanen, J. and Partanen, P. (2009). Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc. Natl. Acad. Sci. USA. 106:17193–17198.
  • Kasper, H. (1998). Protection against gastrointestinal diseases – Present facts and future developments. Int. J. Food Microbiol. 41:127–131.
  • Kaushal, D. and Kansal, V. K. (2011). Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum alleviates age-inflicted oxidative stress and improves expression of biomarkers of ageing in mice. Mol. Biol. Rep. 39:1791–1799.
  • Kaushik, J. K., Kumar, A., Duary, R. K., Mohanty, A. K., Grover, S. and Batish, V. K. (2009). Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. Plos One. 1;4(12):e8099.
  • Kerenyi, T., Voss, B., Rauterberg, J., Fromme, H. G., Jellinek, H. and Hauss, W. H. (1985). Connective tissue proteins on the injured endothelium of the rat aorta. Exp. Mol. Pathol. 43:151–161.
  • Kim, M., Ogawa, M., Mimuro, H. and Sasakawa, C. (2010). Reinforcement of epithelial cell adhesion to basement membrane by a bacterial pathogen as a new infectious stratagem. Virulence. 1:52–55.
  • Klein, G., Pack, A., Bonaparte, C. and Reuter, G. (1998). Taxonomy and physiology of probiotic lactic acid bacteria. Int. J. Food Microbiol. 41:103–125.
  • Knauf, H. J., Vogel, R. F. and Hammes, W. P. (1992). Cloning, sequencing, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl. Environ. Microbiol. 58:832–839.
  • Koenen, M. E., Kramer, J., van der Hulst, R., Heres, L., Jeurissen, S. H. and Boersma, W. J. (2004). Immunomodulation by probiotic Lactobacilli in layer- and meat-type chickens. Br. Poult. Sci. 45:355–366.
  • Korpela, R., Peuhkuri, K., Lahteenmaki, T., Sievi, E., Saxelin, M. and Vapaatalo, H. (1997). Lactobacillus rhamnosus GG shows antioxidative properties in vascular endothelial cell culture. Milchwissenschaft. 52:503–505.
  • Kotzamanidis, C., Kourelis, A., Litopoulou-Tzanetaki, E., Tzanetakis, N. and Yiangou, M. (2010). Evaluation of adhesion capacity, cell surface traits and immunomodulatory activity of presumptive probiotic Lactobacillus strains. Int. J. Food Microbiol. 140:154–163.
  • Kristin, K. K., Pawel, S., Markus, G. and Andrei, N. L. (2006). Model structure of the prototypical non-fimbrial adhesin YadA of Yersinia enterocolitica. J. Stru. Biol. 155:154–161.
  • Kullisar, T., Zilmer, M., Mikelsaar, M., Vikalemm, T. and Annuk, H. (2002). Two antioxidative Lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 72:215–224.
  • Kumar, R., Grover, S. and Batish, V. K. (2011). Hypocholesterolaemic effect of dietary inclusion of two putative probiotic bile salt hydrolaseproducing Lactobacillus plantarum strains in Sprague-Dawley rats. Br. J. Nutri. 105:561–573.
  • Laparra, J. M. and Sanz, Y. (2009). Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Letts. Appl. Microbiol. 49:695–701.
  • Lee, Y. K., Lim, C. Y., Teng, W. L., Ouwehand, A. C., Tuomola, E. M. and Salminen, S. (2000). Quantitative approach in the study of adhesion of lactic acid bacteria to intestinal cells and their competition with enterobacteria. Appl. Environ. Microbiol. 66:3692–3697.
  • Leonard, F., Collnot, E. M. and Lehrv, C. M. (2010). A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Mol. Pharm. 7:2103–2119.
  • Lidbeck, A. and Nord, C. E. (1993). Lactobacilli and the normal human anaerobic microflora. Clin. Infect. Dis. 16:181–187.
  • Lin, M. Y. and Yen, C. L. (1999a). Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 47:1460–1466.
  • Lin, M. Y. and Yen, C. L. (1999b). Inhibition of Lipid Peroxidation by Lactobacillus acidophilus and Bifidobacterium longum. J. Agric. Food Chem. 47:3661–3664.
  • Liu, Z., Shen, T., Zhang, P., Ma, Y. and Qin, H. (2010). Lactobacillus plantarum surface layer adhesive protein protects intestinal epithelial cells against tight junction injury induced by enteropathogenic Escherichia coli. Mol. Biol. Rep. 10:457–458.
  • Livingston, M., Loachv D., Wilson, M., Tannock, G. W. and Baird, M. (2010). Gut commensal Lactobacillus reuteri 100–23 stimulates an immunoregulatory response. Immunol. Cell Biol. 88:99–102.
  • Lorca, G., Torino, M. I., de Valdez, G. F. and Ljung, A. (2002). Lactobacilli express cell surface proteins which mediate binding of immobilized collagen and fibronectin. FEMS Microbiol. Lett. 206:31–37.
  • Mack, D. R., Ahrne, S., Hyde, L., Wei, S. and Hollingsworth, M. A. (2003). Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Int. J. Gastroenterol. Hepatol. 52:827–833.
  • Mackenzie, D. A., Jeffers, F., Parker, M. L., Vallet, V. A., Bongaerts, R. J., Roos, S., Walter, J. and Juge, N. (2010). Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiology. 156:3368–3378.
  • Mantle, M. G., Forstner, G. and Forstner, J. F. (1984). Biochemical characterization of the component parts of intestinal mucin from patients with cystic fibrosis. J. Biochem. 224:345–354.
  • Mantle, M. and Husar, S. D. (1994). Binding Yersinia enterocolitica to purified, native small intestinal mucins from rabbits and human involves interactions with the mucin carbohydrate moiety. Infect. Immun. 62:1219–1227.
  • Marco, M. L., Pavan, S. and Kleerebezem, M. (2006). Towards understanding molecular modes of probiotic action. Curr. Opin. Biotechnol. 17:204–210.
  • Marin, M. L., Tejada-Simon, M. V., Lee, J. H., Murtha, J., Ustunol, Z. and Pestka, J. J. (1998). Stimulation of cytokine production in clonal macrophage and T-cell models by Streptococcus thermophilus: Comparison with Bifidobacterium sp. and Lactobacillus bulgaricus. J. Food Prot. 61:859–864.
  • Masood, M. I., Qadir, M. I., Shirozi, J. H. and Khan, I. U. (2010). Beneficial effect of lactic acid bacteria on human being. Crit. Rev. Microbiol. 37:91–98.
  • McGrady, J. A., Butcher, W. G., Beighton, D. and Switalski, L. M. (1995). Specific and charge interactions mediate collagen recognition by oral Lactobacilli. J. Dent. Res. 74:649–657.
  • Mikelsaar, M. and Mandar, R. E. (1998). Lactic acid microflora in the human microbial ecosystem and its development. In: Lactic Acid Bacteria, Microbiology and Functional Aspects, pp. 279–342. Salminen, S. and von Wright, A., Eds., Marcel Dekker, New York, NY.
  • Mitsuoka, T. (1992). The human gastrointestinal tract. In: The Lactic Acid Bacteria, Vol. 1 The Lactic Acid Bacteria in Health in Disease, pp. 69–114. Wood, B. J. B., Ed., Elsevier, New York, NY.
  • Moore, W. E. C. and Holdeman, L. V. (1974). Human fecal flora: The normal flora of 20 Japanese Hawaiians. Appl. Microbiol. 27:961–979.
  • Morelli, L. (2000). In vitro selection of probiotic Lactobacilli: A critical appraisal. Curr. Issues Intest. Microbiol. 1:59–67.
  • Nagpal, R., Kumar, A., Kumar, M., Behare, P. V., Jain, S. and Yadav, H. (2012). Probiotics, their health benefits and applications for developing healthier foods: A review. FEMS Microbiol. Lett. 334:1–15.
  • Nagy, E., Froman, G. and Mardh, P. A. (1992). Fibronectin binding of Lactobacillus species isolated from women with and without bacterial vaginosis. J. Med. Microbiol. 37:38–42.
  • Navarre, W. W. and Schneewind, O. (1999). Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63:174–229.
  • Neeser, J. R., Granato, D., Rouvet, M., Servin, A., Teneberg, S. and Karlsson, K. A. (2000). Lactobacllus johnsonii La1 shares carbohydrate binding specificities with several enteropathogenic bacteria. Glycobiology. 10:1193–1199.
  • Nelly, C., Borjana, T., Zdravko, L., Albena, J. and Jidar, J. (2004). Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-Hexadecane. Z. Naturforsch. 59:70–74.
  • Nissen, L., Chingwaru, W., Sgorbati, B., Biavati, B. and Cencic, A. (2009). Gut health promoting activity of new putative probiotic/protective Lactobacillus spp. strains: A functional study in the small intestinal cell model. Int. J. Food Microbiol. 135:288–294.
  • O'Mahony, D., Murphy, K. B., MacSharry, J., Boileau, T., Sunvold, G., Reinhart, G., Kiely, B., Shanahan, F. and O'Mahony, L. (2009). Portrait of a canine probiotic Bifidobacterium – from gut to gut. Vet. Microbiol. 139:106–112.
  • Orla-Jensen, S. (1919). The Lactic Acid Bacteria. Andr. Host and Son. Copenhagen, Denmark.
  • O'sullivan, D. J. (2000). Methods for analysis of the intestinal microflora. Curr. Issues Intest. Microbiol. 1:39–50.
  • Ouwehand, A. C., Tolkko, S. and Salminen, S. (2001). The effect of digestive enzymes on the adhesion of probiotic bacteria in vitro. J. Food Sci. 66:856–859.
  • Park, J. H., Um, J. I., Lee, B. J., Goh, J. S., Park, S. Y., Kim, W. S. and Kim, P. H. (2002). Encapsulated Bifidobacterium bifidum potentiates intestinal IgA production. Cell. Immunol. 219:22–27.
  • Parvez, S., Malik, K. A., Ah Kang, S. and Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100:1171–1185.
  • Patti, J. M., Allen, B. L., McGavin, M. J. and Hook, M. (1994). MSCRAMM-mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol. 48:585–517.
  • Payne, S., Gibson, G., Wynne, A., Hudspith, B., Brostoff, J. and Kieran, K. (2003). In vitro studies on colonization resistance of the human gut microbiota to candida albicans and the effects of tetracycline and Lactobacillus plantarum LPK. Curr. Issues Intest. Microbiol. 4:1–8.
  • Pessi, T., Sutas, Y., Hurme, M. and Isolauri, E. (2000). Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG. Clin. Exp. Allergy. 30:1804–1808.
  • Prockop, D. J., Sieron, A. L. and Li, S. W. (1998). Procollagen N-proteinase and procollagen C-proteinase. Two unusual metalloproteinases that are essential for procollagen processing probably have important roles in development and cell signaling. Matrix Biol. 16:399–408.
  • Pum, D. and Sleytr, U. B. (1999). The application of bacterial S-layers in molecular nanotechnology. Trends Biotech. 17:8–12.
  • Qin, X., Caputo, F. J., Xu, D. Z. and Deitch, E. A. (2008). Hydrophobicity of mucosal surface and its relationship to gut barrier function. Shock. 29:372–376.
  • Ramiah, K., Reenen, C. A. and Dicks, L. M. (2008). Surface-bound proteins of Lactobacillus plantarum 423 that contribute to adhesion of Caco-2 cells and their role in competitive exclusion and displacement of Clostridium sporogenes and Enterococcus faecalis. Res. Microbiol. 159:470–475.
  • Rastall, R. A., Gibson, G. R., Gill, H. S., Guarner, F., Klaenhammer, T. R., Pot, B., Reid, G., Rowland, I. R. and Sanders, M. E. (2005). Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: An overview of enhance and potential applications. FEMS Microbiol. 2:145–152.
  • Reuter, G. (2001). The Lactobacillus and Bifidobacterium microflora of the human intestine: Composition and succession. Curr. Issues Intest. Microbiol. 2:43–53.
  • Roos, S., Aleljung, P., Robert, N., Lee, B., Wadstrom Lindberg, M. and Jonsson, H. (1996). A collagen binding protein from Lactobacillus reuteri is part of an ABC transporter system. FEMS Microbiol. Lett. 144:33–38.
  • Roos, S., Karner, F., Axelsson, L. and Jonsson, H. (2000). Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int. J. Syst. Evol. Microbiol. 50:251–258.
  • Saeed, A. and Heczko, P. B. (2007). Surface properties of Lactobacilli isolated from healthy subject. Folia Med. Cracov. 48:99–111.
  • Salminen, S., Isolauri, E. and Salminen, E. (1996). Probiotics and stabilization of the gut mucosal barrier. Asia Pacific J. Clin. Nutri. 5:53–56.
  • Salminen, S. and von Wright, A. (1998). Lactic Acid Bacteria, Microbiology and Functional Aspects. Marcel Dekker New York, NY.
  • Sambuy, Y., De Angelis, I., Ranaldi, G., Scarino, M. L., Stammati, A. and Zucco, F. (2005). The Caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol. 21:1–26.
  • Sears, C. L. (2005). A dynamic partnership: Celebrating our gut flora. Anaerobe. 12:247–251.
  • Servin, A. L. and Coconnier, M. H. (2003). Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Clin. Gastroenterol. 17:741–754.
  • Sharpe, M. E. (1981). The genus Lactobacillus. In: The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria, 1653–1674. Starr, M. P., Stolp, H., Truper, H. G., Balows, A. and Schlegel, H. G., Eds., Springer-Verlag, Berlin, Germany.
  • Shimada, K., Bricknell, K. S. and Finegold, S. M. (1969). Deconjugation of bile acids by intestinal bacteria: A review of literature and additional studies. J. Infect. Dis. 119:73–81.
  • Sillanpaa, J., Martínez, B., Antikainen, J., Toba, T., Kalkkinen, N., Tankka, S. and Lounatmaa, K. (2000). Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus. J. Bacteriol. 182:6440–6450.
  • Sleytr, U. B. and Beveridge, T. J. (1999). Bacterial S-layers. Trends Microbiol. 7:253–260.
  • Sleytr, U. B. and Sara, M. (1997). Bacterial and archaeal S-layer proteins: Structure-function relationships and their biotechnological applications. Trends Biotechnol. 15:20–26.
  • Song, Y. L., Kato, N., Liu, C. X., Kato, H. and Watanabe, K. (1999). Identification and hydrogen peroxide production by fecal and vaginal Lactobacilli isolated from Japanese women and newborn infants. J. Clin. Microbiol. 37:3062–3064.
  • Song, Y. L., Kato, N., Liu, C. X., Matsumiya, Y., Kato, H. and Watanabe, K. (2000). Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S–23S rRNA intergenic spacer region and its flanking 23S rRNA. FEMS Microbiol. Letts. 187:167–173.
  • Stackebrandt, E. and Teuber, M. (1988). Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie. 70:317–324.
  • Stecchini, M. L., Del Torre, M. and Munari, M. (2001). Determination of peroxyl-radical-scavenging of lactic acid bacteria. Int. J. Food Microbiol. 64:183–188.
  • Stetinova, V., Smetanova, L., Kvetina, J., Svoboda, Z., Zidek, Z. and Tlaskalova-Hogenova, H. (2010). Caco-2 cell monolayer integrity and effect of probiotic Escherichia coli Nissle 1917 components. Neuro. Endocrinol. Lett. 31:51–56.
  • Stewart, L., Pellegrini, C. A. and Way, L. W. (1986). Antibacterial activity of bile acids against common biliary tract organisms. Surg. Forum. 37:157–159.
  • Stiles, M. E. and Holzapfel, W. H. (1997). Lactic acid bacteria and their current taxonomy. Int. J. Food Microbiol. 36:1–29.
  • Styriak, I., Nemcova, R., Chang, Y. H. and Ljungh, A. (2003). Binding of extracellular matrix molecules by probiotic bacteria. Lett. Appl. Microbiol. 37:329–333.
  • Sun, J., Hu, X. L., Le, G. W. and Shi, Y. H. (2010). Lactobacilli prevent hydroxy radical production and inhibit Escherichia coli and Enterococcus growth in system mimicking colon fermentation. Lett. Appl. Microbiol. 50:264–269.
  • Sun, J., Le, G. W., Shi, Y. H. and Su, G. W. (2007). Factors involved in binding of Lactobacillus plantarum Lp6 to rat small intestinal mucus. Lett. Appl. Microbiol. 44:79–85.
  • Symersky, J., Patti, J. M., Carson, M., House-Pompeo, K., Teale, M., Moore, D., Jin, L., Schneider, A., DeLucas, L. J., Hook, M. and Narayana, S. V. (1997). Structure of the collagen-binding domain from a Staphylococcus aureus adhesin. Nat. Struct. Biol. 10:833–838.
  • Taheri, H., Tabandeh, F., Moravej, H., Zaghari, M., Shivazad, M. and Shariati, P. (2009). Potential probiotic of Lactobacillus johnsonii LT171 for chicken nutrition. Afr. J. Biotech. 8:5833–5837.
  • Tallon, R., Arias, S., Bressollier, P. and Urdaci, M. C. (2006). Strain- and matrix-dependent adhesion of Lactobacillus plantarum is mediated by proteinaceous bacterial compounds. J. Appl. Microbiol. 102:442–451.
  • Tannock, G. W. (1992a). The lactic microflora of pigs, mice and rats. In: The Lactic Acid Bacteria, Vol. 1. The Lactic Acid Bacteria in Health in Disease, pp. 21–48. Wood, B. J. B., Ed., Elsevier Applied Science, New York, NY.
  • Tannock, G. W. (1992b). The lactic microflora of pigs, mice, and rats. In: The Lactic Acid Bacteria, Vol. 1. The Lactic Acid Bacteria in Health and Disease, p. 21–48, Wood, B. J. B., Ed., Elsevier Applied Science, London.
  • Tannock, G. W., Tilsala-Timisjarvi, A., Rodtong, S., Munro, J. N. K. and Alatossava, T. (1999). Identification of Lactobacillus isolates from the gastrointestinal tract, silage, and yoghurt by 16S-23S rRNA gene intergenic spacer region sequence comparisons. Appl. Environ. Microbiol. 65:4264–4267.
  • Toba, T., Virkola, R., Westerlund, B., Bjorkman, Y., Sillanpaa, J., Vartio, T., Kalkkinen, N. and Korhonen, T. K. (1995). A collagen binding S-layer protein in Lactobacillus crispatus. Appl. Environ. Microbiol. 61:2467–2471.
  • Tuomola, E. M., Ouwehand, A. C. and Salminen, S. J. (1999). The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunm. Med. Microbiol. 26:137–142.
  • Vandamme, P., Pot, B., Gillis, M., De Vos, P., Kersters, K. and Swings, J. (1996). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60:407–438.
  • Van den Abbeele, P., Roos, S., Eeckhaut, V., MacKenzie, D. A., Derde, M., Verstraete, W., Marzorati, M., Possemiers, S., Vanhoecke, B., Van Immerseel, F. and Van de Wiele, T. (2012). Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by Lactobacilli. Microbiol. Biotechnol. 5:106–115.
  • Van der Waaij, D., Vries, J. M. B. D. and van der Lekkerkerk, W. J. E. C. (1971). Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hyg. 69:405–411.
  • Vanessa, L., Moal, L. and Servin, L. (2006). The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: Mucins, antimicrobial peptides, and microbiota. Clin. Microbiol. Rev. 19:315–337.
  • Velez, M. P., De Keersmaecker, S. C. and Vanderleyden, J. (2007). Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol. Lett. 276:140–148.
  • Ventura, M., Jankovic, I., Walker, D. C., Pridmore, R. D. and Zink, R. (2002). Identification and characterization of novel surface proteins in Lactobacillus johnsonii and Lactobacillus gasseri. Appl. Environ. Microbiol. 68:6172–6181.
  • Vidal, M., Forestier, C., Charbonnel, N., Henard, S., Rabaud, C. and Lesens, O. (2010). Probiotics and intestinal colonization by vancomycin-resistant enterococci in mice and humans. J. Clin. Microbiol. 48:2595–2598.
  • Vidgren, G., Palva, I., Pakkanen, R., Lounatmaa, K. and Palva, A. (1992). Slayer protein gene of Lactobacillus brevis: Cloning by polymerase chain reaction and determination of the nucleotide sequence. J. Bacteriol. 174:7419–7427.
  • Westerlund, B. and Korhonen, T. K. (1993). Bacterial proteins binding to the mammalian extracellular matrix. Mol. Microbiol. 9:687–694.
  • Wilson, J. J., Matsushita, O., Okabe, A. and Sakon, J. (2003). A bacterial collagen-binding domain with novel calcium-binding motif controls domain orientation. EMBO J. 22:1743–1752.
  • Woese, C. R. (1987). Bacterial evolution. Microbiol. Rev. 51:221–271.
  • Yadav, A., Tyagi, A., Saklani, A. C., Kaushik, J., Grover, S. and Batish, V. K. (2013). Role of surface layer collagen binding protein from indigenous Lactobacillus plantarum 91 in adhesion and its anti-adhesion potential against gut pathogen. Microbiol. Res. 168:639–645.
  • Yuen, L., Dionne, J., Arif, B. and Richardson, C. (1990). Identification and sequencing of the spheroidin gene of Choristoneura biennis entomopoxvirus. Virology. 175:427–433.
  • Zaizu, H., Sasaki, M., Nakajima, H. and Suzuki, Y. (1993). Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 76:2493–2499.
  • Zhu, L., Lee, P., Yu, D., Tao, S. and Chen, Y. (2010). Cloning and characterization of human MUC19 gene. Am. J. Respir. Cell Mol. Biol. 45:348–358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.