1,515
Views
36
CrossRef citations to date
0
Altmetric
Research Article

Factors influencing antioxidant compounds in rice

&

References

  • Abulude, F. O. (2004). Effect of processing on nutritional composition, phytate and functional properties of rice (Oryza sativa L.) flour. Niger. Food J. 22:97–104.
  • Ahn, D. J., Won, J. G., Rico, C. M. and Lee, S. C. (2010). Influence of variety, location, growing year, and storage on the total phosphorus, phytate-phosphorus, and phytate-phosphorus to total phosphorus ratio in rice. J. Agric. Food Chem. 58:3008–3011.
  • Albarracín, M., González, R. J. and Drago, S. R. (2013). Effect of soaking process on nutrient bio-accessibility and phytic acid content of brown rice cultivar. LWTFood Sci. Technol. 53:76–80.
  • Azeke, M. A., Egielewa, S. J., Eigbogbo, M. U. and Ihimire, I. G. (2011). Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum). J. Food Sci. Technol. 48:724–729.
  • Azmi, N. H., Norsharina, I., Mustapha, U. M. and Maznah, I. (2013). Ethyl acetate extract of germinated brown rice attenuates hydrogen peroxide-induced oxidative stress in human SH-SY5Y neuroblastoma cells: role of anti-apoptotic, pro-survival and antioxidant genes. BMC Complement. Altern. Med. 13:177.
  • Azrina, A., Maznah, I. and Azizah, A. H. (2010). Extraction and determination of oryzanol in rice bran of mixed herbarium UKMB, AZ 6807: MR 185, AZ 6808: MR 211, AZ6809: MR 29. ASEAN Food J. 15:89–96.
  • Banchuen, J., Thammarutwasik, P., Ooraikul, B., Wuttijumnong, P. and Sirivongpaisal, P. (2009). Effect of germinating processes on bioactive component of Sangyod Muang Phatthalung Rice. Thai J. Agric. Sci. 42:191–199.
  • Bao, L., Li, Y., Wang, Q., Han, J., Yang, X., Li, H., Wang, S., Wen, H., Li, S. and Liu, H. (2013). Nutritive and bioactive components in rice fermented with the edible mushroom Pleurotus eryngii. Fungal Biol. 4:96–102.
  • Berger, A., Rein, D., Schäfer, A., Monnard, I., Gremaud, G., Lambelet, P. and Bertoli, C. (2005). Similar cholesterol-lowering properties of rice bran oil, with varied γ-oryzanol, in mildly hypercholesterolemic men. Eur. J. Nutr. 44:163–173.
  • Berger, R. G., Lunkenbein, S., Ströhle, A. and Hahn, A. (2012). Antioxidants in food: mere myth or magic medicine? Crit. Rev. Food Sci. Nutr. 52:162–171.
  • Britz, S. J., Prasad, P. V. V., Moreau, R. A Jr., Allen, L. H., Kremer, D. F. and Boote, K. J. (2007). Influence of growth temperature on the amounts of tocopherols, tocotrienols, and γ-oryzanol in brown rice. J. Agric. Food Chem. 55:7559–7565.
  • Butsat, S. and Siriamornpun, S. (2010). Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chem. 119:606–613.
  • Butsat, S., Weerapreeyakul, N. and Siriamornpun, S. (2009). Changes in phenolic acids and antioxidant activity in Thai rice husk at five growth stages during grain development. J. Agric. Food Chem. 57:4566–4571.
  • Canan, C., Delaroza, F., Casagrande, R., Baracat, M. M., Shimokomaki, M. and Ida, E. I. (2012). Antioxidant capacity of phytic acid purified from rice bran. Acta Sci. Technol. 34:457–463.
  • Chae, J. C., Lee, D. J., Jun, D. K., Ryu, S. N. and Shin, J. C. (2004). Changes of anthocyanin pigment cyanidin-3-glucoside, oryzanol content and antioxidant activity as affected by ripening temperature in rice varieties. In: Proceedings of the 4th International Crop Science Congress. Brisbane, Australia.
  • Chamnarnsin, P. and Ahromrit, A. (2011). Effect of heating on gamma-oryzanol content and degree of gelatinization of Thai colored rice. In: Proceedings of the 12th ASEAN Food Conference, 16 ‐18 June 2011. BITEC Bangna, Bangkok, Thailand.
  • Chaudhary, N. and Khurana, P. (2009). Vitamin E biosynthesis genes in rice: Molecular characterization, expression profiling and comparative phylogenetic analysis. Plant Sci. 177:479–491.
  • Chen, G., Wang, H., Zhang, X. and Yang, S-T. (2014). Nutraceuticals and functional foods in the management of hyperlipidemia. Crit. Rev. Food Sci. Nutr. 54:1180–1201.
  • Chen, P. N., Kuo, W-H., Chiang, C-L., Chiou, H-L., Hsieh, Y-S. and Chu, S-C. (2006). Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chem. Biol. Interact. 163:218–229.
  • Chitropas, P., Priprem, A., Siri, B., Khamlert, C. and Sripanidkulchai, B. (2004). Factors affecting antioxidation and gamma-oryzanol in developed Hom Dok Mali 105 rice bran tablets. Khon Kaen Univ. Res. J. 9:59–67.
  • Cho, J. Y., Lee, H. J., Kim, G. A., Kim, G. D., Lee, Y. S., Shin, S. C., Park, K. Y. and Moon, J. A. (2012). Quantitative analyses of individual γ-Oryzanol (Steryl Ferulates) in conventional and organic brown rice (Oryza sativa L.). J. Cereal Sci. 55:337–343.
  • Cohen, S. D. and Kennedy, J. A. (2010). Plant metabolism and the environment: implications for managing phenolics. Crit. Rev. Food Sci. Nutr. 50:620–643.
  • Cordero, Z., Drogan, D., Weikert, C. and Boeing, H. (2010). Vitamin E and risk of cardiovascular diseases: a review of epidemiologic and clinical trial studies. Crit. Rev. Food Sci. Nutr. 50:420–440.
  • Cuneo, F., Amaya-Farfan, J. and Carraro, F. (2000). Phytate distribution in stabilized rice bran treated with exogenous phytase. Ciência Tecnol. Alime. 20:94–98.
  • Damayanthi, E. (2010). Rice bran stabilization and γ-oryzanol content of two local paddy varieties “IR 64” and “Cisadane Muncul”. J. Teknol. Ind. Pangan 12:72–76.
  • Deng, G. F., Xu, X. R., Zhang, Y., Li, D., Gan, R. Y. and Li, H. B. (2013). Phenolic compounds and bioactivities of pigmented rice. Crit. Rev. Food Sci. Nutr. 53:296–306.
  • Depar, N., Rajpar, I., Sial, N. B. and Keerio, M. I. (2013). Grain phytic acid accumulation of domestic and exotic rice genotypes in zinc-deficient soil. J. Basic Appl. Sci. 9:26–30.
  • Dutta, A. K., Gope, P. S., Banik, S., Makhnoon, S., Siddiquee, M. A. and Kabir, Y. (2012). Antioxidant properties of ten high yielding rice varieties of Bangladesh. Asian Pac. J. Trop. Biomed. 2:S99–S103.
  • Ekasit, O. and Jiraporn, B. (2013). Some physical characteristics and bioactive compounds of young flattened rice (Khao-Mao). Int. Food Res. J. 20:1323–1328.
  • Fardet, A. and Chardigny, J-M. (2013). Plant-based foods as a source of lipotropes for human nutrition: a survey of in vivo studies. Crit. Rev. Food Sci. Nutr. 53:535–590.
  • Finocchiaro, F., Ferrari, B., Gianinetti, A., Dall'asta, C., Galaverna, G., Scazzina, F. and Pellegrini, N. (2007). Characterization of antioxidant compounds of red and white rice and changes in total antioxidant capacity during processing. Mol. Nutr. Food Res. 51:1006–1019.
  • Frank, T., Meuleye, B. S., Miller, A., Shu, Q. Y. and Engel, K. H. (2007). Metabolite profiling of two low phytic acid (lpa) rice mutants. J. Agric. Food Chem. 55:11011–11019.
  • Frontela, C., Garcia-Alonso, F. J., Ros, G. and Martınez, C. (2008). Phytic acid and inositol phosphates in raw flours and infant cereals: The effect of processing. J. Food Comp. Anal. 21:343–350.
  • Fujita, A., Fujitake, H., Kawakami, K. and Nomura, M. (2010). Antioxidant activity of colored rice bran obtained at different milling yields. J. Oleo Sci. 59:563–568.
  • Ghatak, S. B. and Panchal, S. J. (2012). Protective effect of oryzanol isolated from crude rice bran oil in experimental model of diabetic neuropathy. Braz. J. Pharmacog. 22:1092–1103.
  • González, R., Ballester, I., López-Posadas, R., Suárez, M. D., Zarzuelo, A., Martínez-Augustin, O. and Sánchez de Medina, F. (2011). Effects of flavonoids and other polyphenols on inflammation. Crit. Rev. Food Sci. Nutr. 51:331–362.
  • Gopala, K. A. G., Prabhakar, J. V. and Sen, D. P. (1984). Effect of degree of milling on tocopherol content of rice bran. J. Food Sci. Technol. 21:222–224.
  • Goufo, P. (2008). Evaluating the constraints and opportunities for sustainable rice production in Cameroon. Res. J. Agric. Biol. Sci. 4:734–756.
  • Goufo, P., Falco, V., Brites, C., Wessel, D. F., Kratz, S., Rosa, E. A. S., Carranca, C. and Trindade, H. (2014a). Effect of elevated carbon dioxide concentration on rice quality: nutritive value, color, milling and cooking/eating qualities. Cereal Chem. 91:513–521.
  • Goufo, P., Ferreira, L. M. M., Trindade, H. and Rosa, E. A. S. (2015). Distribution of antioxidant compounds in the grain of the Mediterranean rice variety ‘‘Ariete’’. CyTA J. Food 13:140–150.
  • Goufo, P., Ferreira, L. M. M., Carranca, C., Rosa, E. A. S. and Trindade, H. (2014b). Effect of elevated carbon dioxide concentration on rice quality: proximate composition, dietary fibres and free sugars. Cereal Chem. 91:293–299.
  • Goufo, P., Pereira, J., Figueiredo, N., Oliveira M. B. P. P., Carranca, C., Rosa, E. A. S., and Trindade, H. (2014c). Effect of elevated carbon dioxide (CO2) on phenolic acids, flavonoids, tocopherols, tocotrienols, γ-oryzanol and antioxidant capacities of rice (Oryza sativa L.). J. Cereal Sci. 59:15–24.
  • Goufo, P., Pereira, J., Moutinho-Pereira, J., Correia, C. M., Figueiredo, N., Carranca, C., Rosa, E. A. S. and Trindade, H. (2014d). Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration. Environ. Exp. Bot. 99:28–37.
  • Goufo, P. and Trindade, H. (2014). Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, ã-oryzanol, and phytic acid. Food Sci. Nutr. 2: 75–104.
  • Gualberto, D. G., Bergman, C. J., Kazemzadeh, M. and Weber, C. W. (1997). Effect of extrusion processing on the soluble and insoluble fiber, and phytic acid contents of cereal brans. Plant Foods Hum. Nutr. 51:187–198.
  • Gujral, H. S., Sharma, P., Kumar, A. and Singh, B. (2012). Total phenolic content and antioxidant activity of extruded brown rice. Int. J. Food Prop. 15:301–311.
  • Guo, H., Ling, W., Wang, Q., Liu, C., Hu, Y., Xia, M., Feng, X. and Xia, X. (2007). Effect of anthocyanin-rich extract from black rice (Oryza sativa L. indica) on hyperlipidemia and insulin resistance in fructose-fed rats. Plant Foods Hum. Nutr. 62:1–6.
  • Gupta, S. and Abu-Ghannam, S. (2012). Probiotic fermentation of plant based products: possibilities and opportunities. Crit. Rev. Food Sci. Nutr. 52:183–199.
  • Ha, T. Y., Ko, S-N., Lee, S-M., Kim, H-R., Chung, S-Y., Kim, S-R., Yoon, H-H. and Kim, I-H. (2006). Changes in nutraceutical lipid components of rice at different degrees of milling. Eur. J. Lip. Sci. Technol. 108:175–181.
  • Hiemori, M., Koh, E. and Mitchell, A. E. (2009). Influence of cooking on anthocyanins in black rice (Oryza sativa L. japonica var. SBR). J. Agric. Food Chem. 57:1908–1914.
  • Hirawan, R., Diehl-Jones, W. and Beta, T. (2011). Comparative evaluation of the antioxidant potential of infant cereals produced from purple wheat and red rice grains and LC-MS analysis of their anthocyanins. J. Agric. Food Chem. 59:12330–12341.
  • Hou, F., Zhang, R., Zhang, M., Su, D., Wei, Z., Deng, Y., Zhang, Y., Chi, J. and Tang, X. (2013). Hepatoprotective and antioxidant activity of anthocyanins in black rice bran on carbon tetrachloride-induced liver injury in mice. J. Funct. Foods 5:1705–1713.
  • Htwe, N. N., Srilaong, V., Tanprasert, K., Uthairatanakij, A., Photchanachai, S. and Kanlayanarat, S. (2010). Effects of storage time and temperature on radical scavenging activities and bioactive compounds in colored rice varieties. J. Food Agric. Environ. 8:26–31.
  • Huang, S. T., Chen, C. T., Chieng, K. T., Huang, S. H., Chiang, B. H., Wang, L. F., Kuo, H. S. and Lin, C. M. (2005). Inhibitory effects of a rice hull constituent on tumor necrosis factor α, prostaglandin E2, and cyclooxygenase-2 production in lipopolysaccharide-activated mouse macrophages. Ann. N. Y. Acad. Sci. 1042:387–395.
  • Huang, W-Y., Davidge, S. T. and Wu, J. (2013). Bioactive natural constituents from food sources—potential use in hypertension prevention and treatment. Crit. Rev. Food Sci. Nutr. 53:615–630.
  • Hübner, F. and Arendt, E. K. (2013). Germination of cereal grains as a way to improve the nutritional value: A review. Crit. Rev. Food Sci. Nutr. 53:853–861.
  • Hurrell, R. F., Reddy, M. B., Burris, J. and Cook, J. D. (2002). Phytate degradation determines the effect of industrial processing and home cooking on iron absorption from cereal-based foods. Br. J. Nutr. 88:117–123.
  • Imam, M. U., Musa, S. N. A., Azmi, N. H. and Ismail, M. (2012). Effects of white rice, brown rice and germinated brown rice on antioxidant status of type 2 diabetic rats. Int. J. Mol. Sci. 13:12952–12969.
  • In, M. J., Choi, S. Y., Kim, H. R., Park, D. B., Oh, N. S. and Kim, D. C. (2009). Acid production and phytate degradation using a Leuconostoc mesenteroides KC51 Strain in saccharified-rice suspension. J. Appl. Biol. Chem. 52:33–37.
  • Iqbal, J., Minhajuddin, M. and Beg, Z. H. (2003). Suppression of 7,12-dimethylbenz[alpha]anthracene-induced carcinogenesis and hypercholesterolaemia in rats by tocotrienol-rich fraction isolated from rice bran oil. Eur. J. Cancer Prev. 12:447–453.
  • Jang, S. and Xu, Z. (2009). Lipophilic and hydrophilic antioxidants and their antioxidant activities in purple rice bran. J. Agric. Food Chem. 57:858–862.
  • Jantasee, A., Thumanu, K., Muangsan, N., Leeanansaksiri, W. and Maensiri, D. (2014). Fourier transform infrared spectroscopy for antioxidant capacity determination in colored glutinous rice. Food Anal. Methods 7:389–399.
  • Jayadeep, A. and Malleshi, N. G. (2011). Nutrients, composition of tocotrienols, tocopherols, and γ-oryzanol, and antioxidant activity in brown rice before and after biotransformation. CyTA – J. Food 9:82–87.
  • Jeon, K. I., Park, E., Park, H. R., Jeon, Y. J., Cha, S. H. and Lee, S. C. (2006). Antioxidant activity of far-infrared radiated rice hull extracts on reactive oxygen species scavenging and oxidative DNA damage in human lymphocytes. J. Med. Food 9:42–48.
  • Juliano, C., Cossu, M., Alamanni, M. C. and Piu, L. (2005). Antioxidant activity of gamma-oryzanol: Mechanism of action and its effect on oxidative stability of pharmaceutical oils. Int. J. Pharm. 299:146–154.
  • Jung, E. H., Kim, S. R., Hwang, I. K. and Ha, T. Y. (2007). Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db Mice. J. Agric. Food Chem. 55:9800–9804.
  • Kanmani, P. R., Kumar, R. S., Yuvaraj, N., Paari, K. A., Pattukumar, V. and Arul, V. (2013). Probiotics and its functionally valuable products—a review. Crit. Rev. Food Sci. Nutr. 53:641–658.
  • Kesarwani, A., Chiang, P. Y., Chen, S. S. and Su, P. C. (2013). Antioxidant activity and total phenolic content of organically and conventionally grown rice cultivars under varying seasons. J. Food Biochem. 37:661–668.
  • Khatoon, S. and Gopalakrishna, A. G. (2004). Fat-soluble nutraceuticals and fatty acid composition of selected Indian rice varieties. J. Am. Oil Chem. Soc. 81:939–943.
  • Khuwijitjaru, P., Yuenyong, T., Pongsawatmanit, R. and Adachi, S. (2011). Effects of ferric chloride on thermal degradation of γ-oryzanol and oxidation of rice bran oil. Eur. J. Lip. Sci. Technol. 113:652–657.
  • Kiing, I., Yiu, P., Rajan, A. and Wong, S. (2009). Effect of germination on γ-oryzanol content of selected sarawak rice cultivars. Am. J. Appl. Sci. 6:1658–1661.
  • Kim, D. and Han, G. D. (2011). Ameliorating effects of fermented rice bran extract on oxidative stress induced by high glucose and hydrogen peroxide in 3T3-L1 adipocytes. Plant Foods Hum. Nutr. 66:285–290.
  • Kim, K. S. and Jang, H. D. (2004). Effects of chitosan and lactic acid on enzymatic activities and bioactive compounds during germination of black rice. J. Food Sci. Nutr. 9:199–205.
  • Kim, S. K., Shin, J-H., Kang, D-K., Kim, S-Y. and Park, S-Y. (2013). Changes of anthocyanidin content and brown rice yield rice varieties among different transplanting and harvesting times. J. Crop Sci. Biotech. 58:28–35.
  • Kim, S. M., Rico, C. W., Lee, S. C. and Kang, M. Y. (2010). Modulatory effect of rice bran and phytic acid on glucose metabolism in high fat-fed C57BL/6N mice. J. Clin. Biochem. Nutr. 47:12–17.
  • Kim, S. P., Kang, M. Y., Nam, S. Y. and Friedman, M. (2012). Dietary rice bran component γ-oryzanol inhibits tumor growth in tumor-bearing mice. Mol. Nutr. Food Res. 56:935–944.
  • Ko, S. N., Kim, C. J., Kim, C. T., Kim, H., Chung, S. H., Lee, S. M., Yoon, H. H. and Kim, I. H. (2003). Changes of vitamin E content in rice bran with different heat treatment. Eur. J. Lip. Sci. Technol. 105:225–228.
  • Kong, C. K. L., Lam, W. S., Chiu, L. C. M., Ooi, V. E. C., Sun, S. S. M. and Wong, Y-S. (2009). A rice bran polyphenol, cycloartenyl ferulate, elicits apoptosis in human colorectal adenocarcinoma SW480 and sensitizes metastatic SW620 cells to TRAIL-induced apoptosis. Biochem. Pharmacol. 77:1487–1496.
  • Kongkiattikajorn, J., Tosingharach, V., Mongkol, S. and Rattanachaisit, P. (2010). Analysis of tocopherol content and antioxidant properties of rice bran and correlation to cereal color during storage. In: Proceedings of 48th Kasetsart University Annual Conference, Kasetsart University, Bang Khen, Bangkok, Thailand.
  • Ktenioudaki, A., Alvarez-Jubete, L. and Gallagher, E. (2015). A review of the process-induced changes in the phytochemical content of cereal grains: The breadmaking process. Crit. Rev. Food Sci. Nutr. 55:611–619.
  • Landete, J. M. (2013). Dietary intake of natural antioxidants vitamins and polyphenols. Crit. Rev. Food Sci. Nutr. 53:706–721.
  • Laokuldilok, T., Surawang, S. and Klinhom, J. (2013). Influence of milling time on the nutritional composition and antioxidant content of Thai rice bran. Food Appl. Biosci. J. 13:112–130.
  • Lavecchia, T., Rea, G., Antonacci, A. and Giardi, M. T. (2013). Healthy and adverse effects of plant-derived functional metabolites: the need of revealing their content and bioactivity in a complex food matrix. Crit. Rev. Food Sci. Nutr. 53:198–213.
  • Lazarou, C., Panagiotakos, D. and Matalas, A-L. (2012). The role of diet in prevention and management of type 2 diabetes: implications for public health. Crit. Rev. Food Sci. Nutr. 52:382–389.
  • Lee, S. C., Kim, J. H., Jeong, S. M., Ha, J. U., Nam, K. C. and Ahn, D. U. (2004). Antioxidant activity of organic solvent extracts from far infrared-treated rice hulls. Food Sci. Biotechnol. 13:172–175.
  • Lee, Y. R., Woo, K. S., Kim, K. J. and Jeong, H. S. (2007). Antioxidant activities of ethanol extracts from germinated specialty rough rice. Food Sci. Biotechnol. 16:765–770.
  • Lestienne, I., Icard, V. C., Mouquet, C., Picq, C. and Trèche, S. (2004). Effects of soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food Chem. 89:421–425.
  • Liang, C. H., Syu, J. L. and Mau, J. L. (2009a). Antioxidant properties of solid-state fermented adlay and rice by Phellinus linteus. Food Chem. 116:841–845.
  • Liang, J. F., Han, B. Z., Nout, M. J. R. and Hamer, R. J. (2008a). Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chem. 110:821–828.
  • Liang, J. F., Han, B. Z., Nout, M. J. R. and Hamer, R. J. (2009b). Effect of soaking and phytase treatment on phytic acid, calcium, iron and zinc in rice fractions. Food Chem. 115:789–794.
  • Liang, J. F., Lia, Z. G., Tsuji, K. C., Nakano, K., Nout, M. J. R. and Hamer, R. J. (2008b). Milling characteristics and distribution of phytic acid and zinc in long-, medium- and short-grain rice. J. Cereal Sci. 48:83–91.
  • Lin, C. M., Chen, C. T., Lee, H. H. and Lin, J. K. (2002). Prevention of cellular ROS damage by isovitexin and related flavonoids. Planta Medica 68:363–365.
  • Lin, P. Y. and Lai, H. M. (2011). Bioactive compounds in rice during grain development. Food Chem. 127:86–93.
  • Liu, X., Li, X. and Lei, G. (2010). Storage effects on total phenolics, antioxidant capacity in Indica-Japonica genotype rice grain. In: 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), Chengdu, China.
  • Lloyd, B. J., Siebenmorgen, T. J. and Beers, K. W. (2000). Effects of commercial processing on antioxidants in rice bran. Cereal Chem. 77:551–555.
  • Loypimai, P., Moonggarm, A. and Chottanom, P. (2009). Effects of ohmic heating on lipase activity, bioactive compounds and antioxidant activity of rice bran. Austral. J. Basic Appl. Sci. 3:3642–3652.
  • Maisuthisakul, P. and Changchub, C. (2012). Effect of cooking on total phenolic and anthocyanin contents of 9 genotypes from Thai rice grains. Agric. Sci. J. 43:669–672.
  • Manosroi, A., Ruksiriwanich, W., Kietthanakorn, B. O., Manosroi, W. and Manosroi, J. (2011). Relationship between biological activities and bioactive compounds in the fermented rice sap. Food Res. Int. 44:2757–2765.
  • Marfo, E. K., Simpson, B. K., Idow, J. S. and Oke, O. L. (1990). Effect of local food processing on phytate levels in cassava, cocoyam, yam, maize, sorghum, rice, cowpea, and soybean. J. Agric. Food Chem. 38:1580–1585.
  • Marrazzo, G., Barbagallo, I., Galvano, F., Malaguarnera, M., Gazzolo, D., Frigiola, A., D'Orazio, N. and Volti, L. (2014). Role of dietary and endogenous antioxidants in diabetes. Crit. Rev. Food Sci. Nutr. 54:1599–1616.
  • Massaretto, I. L., Alves, M. F. M., de Mira, N. V. M., Carmona, A. K. and Marquez, U. M. L. (2011). Phenolic compounds in raw and cooked rice (Oryza sativa L.) and their inhibitory effect on the activity of angiotensin I-converting enzyme. J. Cereal Sci. 54:236–240.
  • Miller, A. and Engel, K. H. (2006). Content of γ-oryzanol and composition of steryl ferulates in brown rice (Oryza sativa L.) of European origin. J. Agric. Food Chem. 54:8127–8133.
  • Min, B., McClung, A. and Chen, M. H. (2014). Effects of hydrothermal processes on antioxidants in brown, purple and red bran whole grain rice (Oryza sativa L.). Food Chem. 159:106–115.
  • Min, S. W., Ryu, S. N. and Kim, D. H. (2010). Anti-inflammatory effects of black rice, cyanidin-3-O-β-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int. Immunopharmacol. 10:959–966.
  • Moongngarm, A. and Khomphiphatkul, E. (2011). Germination time-dependence of bioactive compounds and antioxidant activity in germinated rough rice (Oryza sativa L.). Am. J. Appl. Sci. 8:15–25.
  • Moongngarm, A. and Saetung, N. (2010). Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chem. 122:782–788.
  • Nakano, H., Ono, H., Iwasawa, N., Takai, T., Arai-Sanoh, Y. and Kondo, M. (2013). Isolation and identification of phenolic compounds accumulated in brown rice grains ripened under high air temperature. J. Agric. Food Chem. 61:11921–11928.
  • Nakashima, K., Virgona, N., Miyazawa, M., Watanabe, T. and Yano, T. (2010). The Tocotrienol-rich fraction from rice bran enhances cisplatin-induced cytotoxicity in human mesothelioma H28 cells. Phytother. Res. 24:1317–1321.
  • Nayak, B., Liu, R. H. and Tang, J. (2015). Effect of processing on phenolic antioxidants of fruits, vegetables and grains - a review. Crit. Rev. Food Sci. Nutr. 55:887–919.
  • Ning, H., Liu, Z., Wang, Q., Lin, Z., Chen, S., Li, G., Wang, S. and Ding, Y. (2009). Effect of nitrogen fertilizer application on grain phytic acid and protein concentrations in japonica rice and its variations with genotypes. J. Cereal Sci. 50:49–55.
  • Norazalina, S., Norhaizan, M. E. and Hairuszah, I. (2013). Suppression of β-catenin and cyclooxygenase-2 expression and cell proliferation in azoxymethane-induced colonic cancer in rats by rice bran phytic acid (PA). Asian Pac. J. Cancer Prev. 14:3093–3099.
  • Noreen, N., Shah, H., Anjum, F., Masood, T. and Faisal, S. (2009). Variation in mineral composition and phytic acid content in different rice varieties during home traditional cooking processes. Pak. J. Life Soc. Sci. 7:11–15.
  • Nurul-Husna, S., Norhaizan, M. E., Hairuszah, I., Abdah, M. A., Norazalina, S. and Norsharina, I. (2010). Rice bran phytic acid (IP6) induces growth inhibition, cell cycle arrest and apoptosis on human colorectal adenocarcinoma cells. J. Med. Plants Res. 4:2283–2289.
  • Ohara, K., Uchida, A., Nagasaka, R., Ushio, H. and Ohshima, T. (2009). The effects of rice hydroxycinnamic acid derivatives on adiponectin secretion. Phytomedicine 16:130–137.
  • Oka, T., Fujimoto, M., Nagasaka, R., Ushio, H., Hori, M. and Ozaki, H. (2010). Cycloartenylferulate, a component of rice bran oil-derived γ-oryzanol, attenuates mast cell degranulation. Phytomedicine 17:152–156.
  • Oliveira, M. S., Cipolatti, E. P., Furlong, E. B. and Soares, L. D. S. (2012). Phenolic compounds and antioxidant activity in fermented rice (Oryza sativa) bran. Ciência Tecnol. Alime. 32:531–537.
  • Park, J. H., Nam, S. H., Kim, Y. O., Kwon, O. D. and An, K. N. (2010). Comparison of quality, physiochemical and functional property between organic and conventional rice. J. Kor. Soc. Food Sci. Nutr. 39:725–730.
  • Pascual, C. C. I., Massaretto, I. L., Kawassaki, F., Barros, R. M. C., Noldin, J. A. and Marquez, U. M. L. (2011). Effects of parboiling, storage and cooking on the levels of tocopherols, tocotrienols and γ-oryzanol in brown rice (Oryza sativa L.). Food Res. Int. 50:676–681.
  • Pelig-Ba, K. B. (2009). Assessment of phytic acid levels in some local cereal grains in two districts in the upper east region of Ghana. Pak. J. Nutr. 8:1540–1547.
  • Pestana, V. R., Zambiazi, R. C., Mendonca, C. R. B., Bruscatto, M. H. and Ramis-Ramos, G. (2009). The influence of industrial processing on the physico-chemical characteristics and lipid and antioxidant contents of rice bran. Grasas Aceites 60:184–193.
  • Pinent, M., Cedó, L., Montagut, G., Blay, M. and Ardévol, A. (2012). Procyanidins improve some disrupted glucose homoeostatic situations: an analysis of doses and treatments according to different animal models. Crit. Rev. Food Sci. Nutr. 52:569–584.
  • Pradeep, P. M., Jayadeep, A., Guha, M. and Singh, V. (2014). Hydrothermal and biotechnological treatments on nutraceutical content and antioxidant activity of rice bran. J. Cereal Sci. 60:187–192.
  • Prior, R. L., Wu, X. and Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplement. J. Agric. Food Chem. 53:4290–4302.
  • Qureshi, A. A., Salser, W. A., Parmar, R. and Emeson, E. E. (2001). Novel tocotrienols of rice bran inhibit atherosclerotic lesions in C57BL/6 ApoE-deficient mice. J. Nutr. 131:2606–2618.
  • Qureshi, A. A., Sami, S. A., Salser, W. A. and Khan, F. A. (2002). Dose-dependent suppression of serum cholesterol by tocotrienol-rich fraction (TRF25) of rice bran in hypercholesterolemic humans. Atherosclerosis 161:199–207.
  • Ragaee, S., Seetharaman, K. and Abdel-Aal, E. M. (2014). Impact of milling and thermal processing on phenolic compounds in cereal grains. Crit. Rev. Food Sci. Nutr. 54:837–849.
  • Ramarathnam, N., Osawa, T., Namiki, M. and Kawakishi, S. (1989). Studies on changes in fatty acid composition and content of endogenous antioxidants during γ irradiation of rice seeds. J. Am. Oil Chem. Soc. 66:105–108.
  • Rastogi, N. K. (2012). Recent trends and developments in infrared heating in food processing. Crit. Rev. Food Sci. Nutr. 51:737–760.
  • Rattanachitthawat, S., Suwannalert, P., Riengrojpitak, S., Chaiyasut, C. and Pantuwatana, S. (2010). Phenolic content and antioxidant activities in red unpolished Thai rice prevents oxidative stress in rats. J. Med. Plants Res. 4:796–801.
  • Reddy, N. R. and Salunkhe, D. K. (1980). Effects of fermentation on phytate phosphorus and mineral content in black gram, rice, and black gram and rice blends. J. Food Sci. 45:1708–1712.
  • Rohrer, C. A. and Siebenmorgen, T. J. (2004). Nutraceutical concentrations within the bran of various rice kernel thickness fractions. Biosyst. Eng. 88:453–460.
  • Rohrer, C. A., Siebenmorgen, T. J. and Howell, T. A. (2002). Effects of storage conditions on nutraceutical levels in rough rice. Univ. Ark. Rice Res. Stu. 504:404–409.
  • Roselina, K., Adilah, M. N. N., Hasanah, M. G., Noranizan, M. A. and Mei-Leng, L. (2011). Effects of microwave treatment on the bioactive components of rice chips from various rice mills in Selangor. In: Universiti Malaysia Terengganu International Annual Symposium Souvenir, pp. 229–234. LS1, Malaysia.
  • Rumruaytum, P., Borompichaichartkul, C. and Kongpensook, V. (2014). Effect of drying involving fluidisation in superheated steam on physicochemical and antioxidant properties of Thai native rice cultivars. J. Food Eng. 123:143–147.
  • Russel, R. M. (2010). Integration of epidemiologic and other types of data into dietary reference intake development. Crit. Rev. Food Sci. Nutr. 50:33–34.
  • Saenjum, C., Chaiyasut, C., Chansakaow, S., Suttajit, M. and Sirithunyalug, B. (2012). Antioxidant and anti-inflammatory activities of gamma-oryzanol rich extracts from Thai purple rice bran. J. Med. Plants Res. 6:1070–1077.
  • Saikia, S., Dutta, H., Saikia, D. and Mahanta, C. L. (2012). Quality characterisation and estimation of phytochemicals content and antioxidant capacity of aromatic pigmented and non-pigmented rice varieties. Food Res. Int. 46:334–340.
  • Sangkitikomol, W., Tencomnao1, T. and Rocejanasaroj, A. (2010). Antioxidant effects of anthocyanins-rich extract from black sticky rice on human erythrocytes and mononuclear leukocytes. Afr. J. Biotechnol. 9:8222–8229.
  • Schramm, R., Abadie, A., Hua, N., Xu, Z. and Lima, M. (2007). Fractionation of the rice bran layer and quantification of vitamin E, oryzanol, protein, and rice bran saccharide. J. Biol. Eng. 1:9.
  • Semsang, N., Kawaree, R., Cutler, R. W., Chundet, R., Yu, L. D. and Anuntalabhochai, S. (2012). Improved antioxidant activity of BKOS Thai jasmine rice. Nat. Prod. Res. 26:1145–1151.
  • Shalini, V., Bhaskar, S., Kumar, K. S., Mohanlal, S., Jayalekshmy, A. and Helen, A. (2012). Molecular mechanisms of anti-inflammatory action of the flavonoid, tricin from Njavara rice (Oryza sativa L.) in human peripheral blood mononuclear cells: Possible role in the inflammatory signalling. Int. Immunopharmacol. 14:32–38.
  • Shao, Y., Tang, F., Xu, F., Wang, Y. and Bao, J. (2013). Effects of γ-irradiation on phenolics content, antioxidant activity and physicochemical properties of whole grain rice. Radiat. Phys. Chem. 85:227–233.
  • Shao, Y., Xu, F., Sun, X., Bao, J. and Beta, T. (2014). Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering. Food Chem. 143:90–96.
  • Sharif, M. K., Butt, M. S., Anjum, F. M. and Khan, S. H. (2014). Rice bran: a novel functional ingredient. Crit. Rev. Food Sci. Nutr. 54:807–816.
  • Sharma, A. and Khetarpaul, N. (1997). Effect of fermentation on phytic acid content and in vitro digestibility of starch and protein of rice-blackgram dhal-whey blends. J. Food Sci. Technol. 34:20–23.
  • Shekib, L. A. E. (1988). Evaluation of protein quality, methionine and lysine availability, and phytic acid in natural fermented lentils, rice and their blend. Alex. J. Agric. Res. 33:135–144.
  • Shih, C. H., Chu, H., Tang, L. K., Sakamoto, W., Maekawa, M., Chu, I. K., Wang, M. and Lo. C. (2008). Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta 228:1043–1054.
  • Shin, T. S. and Godber, J. S. (1996). Changes of endogenous antioxidants and fatty acid composition in irradiated rice bran during storage. J. Agric. Food Chem. 44:567–573.
  • Shin, T. S., Godber, J. S., Martin, D. E. and Wells, J. H. (1997). Hydrolytic stability and changes in E Vitamers and oryzanol of extruded rice bran during storage. J. Food Sci. 62:704–728.
  • Siddiqui, S., Rashid Khan, M. and Siddiqui, W. A. (2010). Comparative hypoglycemic and nephroprotective effects of tocotrienol rich fraction (TRF) from palm oil and rice bran oil against hyperglycemia induced nephropathy in type 1 diabetic rats. Chem. Biol. Interact. 188:651−658.
  • Sidhu, J. S. and Bajaj, M. (1988). Extended milling of Indian rice. IV. Effect on phytic acid content. Chem. Mikrobiol. Technol. Leben. 10:172–175.
  • Sirikul, A., Moongngarm, A. and Khaengkhan, P. (2009). Comparison of proximate composition, bioactive compounds and antioxidant activity of rice bran and defatted rice bran from organic rice and conventional rice. Asian J. Food Ag-Ind. 2:731–743.
  • Somsana, P., Wattana, P., Suriharn, B. and Sanitchon, J. (2013). Stability and genotype by environment interactions for grain anthocyanin content of Thai black glutinous upland rice (oryza sativa). SABRAO J. Breeding Genet. 45:523–532.
  • Srijesdaruk, V., Nantachai, K. and Suwannarong, S. (2001). Studies on efficiency of rice bran (Oryza sativa) tocopherol extracts as antioxidant. Khon Kaen Univ. Res. J. 6:34–44.
  • Sungsopha, J., Moongngarm, A. and Kanesakoo, R. (2009). Application of germination and enzymatic treatment to improve the concentration of bioactive compounds and antioxidant activity of rice bran. Aust. J. Basic Appl. Sci. 3:3653–3661.
  • Sutharut, J. and Sudarat, J. (2012). Total anthocyanin content and antioxidant activity of germinated coloured rice. Int. Food Res. J. 19:215–221.
  • Tananuwong, K. and Tangsrianugul, N. (2013). Effects of storage conditions and cooking on colour and antioxidant activities of organic pigmented rice. Int. J. Food Sci. Technol. 48:67–73.
  • Thanajiruschaya, P., Doksaku, W., Rattanachaisit, P. and Kongkiattikajorn, J. (2010). Effect of storage time and temperature on antioxidant components and properties of milled rice. Khon Kaen Univ. Res. J. 15:843–851.
  • Thanonkaew, A., Wongyai, S., McClements, D. J. and Decker, E. A. (2012). Effect of stabilization of rice bran by domestic heating on mechanical extraction yield, quality, and antioxidant properties of cold-pressed rice bran oil (Oryza saltiva L.). LWT - Food Sci. Technol. 48:231–236.
  • Thitisaksakul, M., Jiménez, R. C., Arias, M. C. and Beckles, D. M. (2012). Effects of environmental factors on cereal starch biosynthesis and composition. J. Cereal Sci. 56:167–180.
  • Tian, S., Nakamura, K. and Kayahara, H. (2004). Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. J. Agric. Food Chem. 52:4808–4813.
  • Tirzitis, G. and Bartosz, G. (2010). Determination of antiradical and antioxidant activity: basic principles and new insights. Acta Biochim. Pol. 57:139–142.
  • Toma, R. B. and Tabekhia, M. M. (1979). Changes in mineral elements and phytic acid contents during cooking of three California rice varieties. J. Food Sci. 44:619–621.
  • Trigueros, L., Peña, S., Ugidos, A. V., Sayas-Barberá, E., Pérez-Álvarez, J. A. and Sendra, E. (2013). Food ingredients as anti-obesity agents: a review. Crit. Rev. Food Sci. Nutr. 53:929–942.
  • Tuaño, A. P. P., Xu, Z., Castillo, M. B., Mamaril, C. P., Manaois, R. V., Romero, M. V. and Juliano, B. O. (2011). Content of tocols, γ-oryzanol and total phenolics and grain quality of brown rice and milled rice applied with pesticides and organic and inorganic nitrogen fertilizer. Philip. Agric. Sci. 94:211–216.
  • Um, M. Y., Ahn, J. and Ha, T. Y. (2013). Hypolipidaemic effects of cyanidin 3-glucoside rich extract from black rice through regulating hepatic lipogenic enzyme activities. J. Sci. Food Agric. 93:3126–3128.
  • Visioli, F., De La Lastra, C., Andres-Lacueva, C., Aviram, M., Calhau, C., Cassano, C., D'Archivio, M., Faria, A., Favé, G., Fogliano, V., Llorach, R., Vitaglione, P., Zoratti, M. and Edeas, M. (2011). Polyphenols and human health: a prospectus. Crit. Rev. Food Sci. Nutr. 51:524–546.
  • Vitaglione, P., Napolitano, A. and Fogliano, V. (2008). Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci. Technol. 19:451–463.
  • Walter, M., Marchesan, E., Massoni, P. F. S., da Silva, L. P., Sartori, G. M. S. and Ferreira, R. B. (2013). Antioxidant properties of rice grains with light brown, red and black pericarp colors and the effect of processing. Food Res. Int. 50:698–703.
  • Wang, K. M., Wu, J. G., Li, G., Zhang, D. P., Yang, Z. W. and Shi, C. H. (2011). Distribution of phytic acid and mineral elements in three indica rice (Oryza sativa L.) cultivars. J. Cereal Sci. 54:116–121.
  • Wang, X., Song, Y-E. and Li, J-Y. (2013). High expression of tocochromanol biosynthesis genes increases the vitamin E level in a new line of giant embryo rice. J. Agric. Food Chem. 61:5860–5869.
  • Wataniyakul, P., Pavasant, P., Goto, M. and Shotipruk, A. (2012). Microwave pretreatment of defatted rice bran for enhanced recovery of total phenolic compounds extracted by subcritical water. Bioresour. Technol. 124:18–22.
  • Weed, D. L. (2013). The quality of nutrition and cancer reviews: a systematic assessment. Crit. Rev. Food Sci. Nutr. 53:276–286.
  • Wilson, T. A., Nicolosi, R. J., Woolfrey, B. and Kritchevsky, D. (2007). Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters. J. Nutr. Biochem. 18:105–112.
  • Wu, F., Yang, N., Toure, A., Jin, Z. and Xu, X. (2013a). Germinated brown rice and its role in human health. Crit. Rev. Food Sci. Nutr. 53:451–463.
  • Wu, L., Zhai, M., Yao, Y., Dong, C., Shuang, S. and Ren, G. (2013b). Changes in nutritional constituents, anthocyanins, and volatile compounds during the processing of black rice tea. Food Sci. Biotechnol. 22:917–923.
  • Xia, X., Ling, W., Ma, J., Xia, M., Hou, M., Wang, Q., Zhu, H. and Tang, Z. (2006). An anthocyanin-rich extract from black rice enhances atherosclerotic plaque stabilization in apolipoprotein E–deficient mice. J. Nutr. 136:2220–2225.
  • Xiao, J. and Kai, G. (2012). A review of dietary polyphenol-plasma protein interactions: characterization, influence on the bioactivity, and structure-affinity relationship. Crit. Rev. Food Sci. Nutr. 52:85–101.
  • Yang, J. H., Tseng, Y. H., Lee, Y. L. and Mau, J. L. (2006). Antioxidant properties of methanolic extracts from monascal rice. LWT – Food Sci. Technol. 39:740–747.
  • Yang, Y., Andrews, M. C., Hu, Y., Wang, D., Qin, Y., Zhu, Y., Ni, H. and Ling, W. (2011). Anthocyanin extract from black rice significantly ameliorates platelet hyperactivity and hypertriglyceridemia in dyslipidemic rats induced by high fat diets. J. Agric. Food Chem. 59:6759–6764.
  • Yen, G. C., Chang, Y. C. and Su, S. W. (2003). Antioxidant activity and active compounds of rice koji fermented with Aspergillus candidus. Food Chem. 83:49–54.
  • Yılmaz, N., Tuncel, N. B. and Kocabıyık, H. (2014). Infrared stabilization of rice bran and its effects on γ-oryzanol content, tocopherols and fatty acid composition. J. Sci. Food Agric. 94:1568–1576.
  • Yoshimura, Y., Zaima, N., Moriyama, T. and Kawamura, Y. (2012). Different localization patterns of anthocyanin species in the pericarp of black rice revealed by imaging mass spectrometry. PLoS ONE 7:e31285.
  • Young, K. M. I., Kim, S. M., Rico, C. W. and Lee, S. C. (2012). Hypolipidemic and antioxidative effects of rice bran and phytic acid in high fat-fed mice. Food Sci. Biotechnol. 21:123–128.
  • Zhao, S., Baik, O-D, Choi, Y. J. and Kim, S-M. (2014). Pretreatments for the efficient extraction of bioactive compounds from plant based biomaterials. Crit. Rev. Food Sci. Nutr. 54:1283–1297.
  • Zhou, Z., Robards, K., Helliwell, S. and Blanchard, C. (2004). The distribution of phenolic acids in rice. Food Chem. 87:401–406.
  • Zhu, F., Cai, Y. Z., Bao, J. and Corke, H. (2010). Effect of γ-irradiation on phenolic compounds in rice grain. Food Chem. 120:74–77.
  • Zhu, W., Jia, Q., Wang, Y., Zhang, Y. and Xia, M. (2012). The anthocyanin cyanidin-3-O-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP-PKA-dependent signaling pathway. Free Rad. Biol. Med. 52:314–327.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.