2,784
Views
118
CrossRef citations to date
0
Altmetric
Research Article

Sensorial properties of red wine polyphenols: Astringency and bitterness

, PhD., , &

References

  • Arts, M. J. T. J., Haenen, G. R. M. M., Wilms, L. C., Beetstra, S. a. J. N., Heijnen, C. G. M., Voss, H.-P. and Bast, A. (2002). Interactions between flavonoids and proteins: Effect on the total antioxidant capacity. J. Agric. Food Chem. 50:1184–1187.
  • Bacon, J. R. and Rhodes, M. J. C. (1998). Development of a competition assay for the evaluation of the binding of human parotid salivary proteins to dietary complex phenols and tannins using a peroxidase-labeled tannin. J. Agric. Food Chem. 46:5083–5088.
  • Bate-Smith, E. C. (1954). Astringency in foods. Food 23:124.
  • Baxter, N. J., Lilley, T. H., Haslam, E. and Williamson, M. P. (1997). Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry 36:5566–5577.
  • Behrens, M. and Meyerhof, W. (2011). Gustatory and extragustatory functions of mammalian taste receptors. Physiol. Behav. 105:4–13.
  • Bennick, A. (1982). Salivary proline-rich proteins. Mol. Cell. Biochem. 45:83–99.
  • Boselli, E., Boulton, R. B., Thorngate, J. H. and Frega, N. G. (2004). Chemical and sensory characterization of DOC red wines from marche (Italy) related to vintage and grape cultivars. J. Agric. Food Chem. 52:3843–3854.
  • Brossaud, F., Cheynier, V. and Noble, A. C. (2001). Bitterness and astringency of grape and wine polyphenols. Aust. J. Grape Wine R. 7:33–39.
  • Cala, O., Dufourc, E. J., Fouquet, E., Manigand, C., Laguerre, M. and Pianet, I. (2012). The colloidal state of tannins impacts the nature of their interaction with proteins: The case of salivary proline-rich protein/procyanidins binding. Langmuir 28:17410–17418.
  • Canon, F., Ballivian, R., Chirot, F., Antoine, R., Sarni-Manchado, P., Lemoine, J. R. M. and Dugourd, P. (2011). Folding of a salivary intrinsically disordered protein upon binding to tannins. J. Am. Chem. Soc. 133:7847–7852.
  • Canon, F., Giuliani, A., Paté, F. and Sarni-Manchado, P. (2010). Ability of a salivary intrinsically unstructured protein to bind different tannin targets revealed by mass spectrometry. Anal. Bioanal. Chem. 398:815–822.
  • Canon, F., Paté, F., Cheynier, V., Sarni-Manchado, P., Giuliani, A., Pérez, J., Durand, D., Li, J. and Cabane, B. (2013). Aggregation of the salivary proline-rich protein IB5 in the presence of the tannin EgCG. Langmuir 29:1926–1937.
  • Carvalho, E., Mateus, N., Plet, B., Pianet, I., Dufourc, E. and De Freitas, V. (2006a). Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins. J. Agric. Food Chem. 54:8936–8944.
  • Carvalho, E., Póvoas, M. J., Mateus, N. and De Freitas, V. (2006b). Application of flow nephelometry to the analysis of the influence of carbohydrates on protein-tannin interactions. J. Sci. Food Agric. 86:891–896.
  • Castagnola, M., Cabras, T., Vitali, A., Sanna, M. T. and Messana, I. (2011). Biotechnological implications of the salivary proteome. Trends Biotechnol. 29:409–418.
  • Condelli, N., Dinnella, C., Cerone, A., Monteleone, E. and Bertuccioli, M. (2006). Prediction of perceived astringency induced by phenolic compounds II: Criteria for panel selection and preliminary application on wine samples. Food Qual. Prefer. 17:96–107.
  • De Freitas, V., Carvalho, E. and Mateus, N. (2003). Study of carbohydrate influence on protein-tannin aggregation by nephelometry. Food Chem. 81:503–509.
  • De Freitas, V. and Mateus, N. (2001). Structural features of procyanidin interactions with salivary proteins. J. Agric. Food Chem. 49:940–945.
  • De Freitas, V. and Mateus, N. (2002). Nephelometric study of salivary protein-tannin aggregates. J. Sci. Food Agric. 82:113–119.
  • De La Iglesia, R., Milagro, F. I., Campión, J., Boqué, N. and Martínez, J. A. (2010). Healthy properties of proanthocyanidins. BioFactors 36:159–168.
  • Diniz, A., Escuder-Gilabert, L., Lopes, N., Villanueva-Camañas, R., Sagrado, S. and Medina-Hernández, M. (2008). Characterization of interactions between polyphenolic compounds and human serum proteins by capillary electrophoresis. Anal. Bioanal. Chem. 391:625–632.
  • Dinnella, C., Recchia, A., Fia, G., Bertuccioli, M. and Monteleone, E. (2009). Saliva characteristics and individual sensitivity to phenolic astringent stimuli. Chem. Senses 34:295–304.
  • Dinnella, C., Recchia, A., Vincenzi, S., Tuorila, H. and Monteleone, E. (2010). Temporary modification of salivary protein profile and individual responses to repeated phenolic astringent stimuli. Chem. Senses 35:75–85.
  • Doco, T., Williams, P., Moutounet, M. and Pellerin, P. (2000). Les polysaccharides du vin. Bull. OIV 73:785–792.
  • Douglas, W. H., Reeh, E. S., Ramasubbu, N., Raj, P. A., Bhandary, K. K. and Levine, M. J. (1991). Statherin:A major boundary lubricant of human saliva. Biochem. Biophys. Res. Commun. 180:91–97.
  • Drayna, D. (2005). Human taste genetics. Annu. Rev. Genomics Hum. Genet. 6:217–235.
  • Edgar, W. M. (1990). Saliva and dental health. Clinical implications of saliva: Report of a consensus meeting. Br. Dent. J. 169:96–98.
  • Fernandes, A., Ivanova, G., Brás, N. F., Mateus, N., Ramos, M. J., Rangel, M. and De Freitas, V. (2014). Structural characterization of inclusion complexes between cyanidin-3-o-glucoside and β-cyclodextrin. Carbohydr. Polym. 102:269–277.
  • Fischer, U., Boulton, R. B. and Noble, A. C. (1994). Physiological factors contributing to the variability of sensory assessments: Relationship between salivary flow rate and temporal perception of gustatory stimuli. Food Qual. Prefer. 5:55–64.
  • Fulcrand, H., Dueñas, M., Salas, E. and Cheynier, V. (2006). Phenolic reactions during winemaking and aging. Am. J. Enol. Vitic. 57:289–297.
  • Gaffney, S. H., Martin, R., Lilley, T. H., Haslam, E. and Magnolato, D. (1986). The association of polyphenols with caffeine and a- and b-cyclodextrin in aqueous media. Chem. Commun. 107–109.
  • Gawel, R., Oberholster, A. and Francis, I. L. (2000). A ‘mouth-feel wheel’: Terminology for communicating the mouth-feel characteristics of red wine. Aust. J. Grape Wine R. 6:203–207.
  • Hagerman, A. E. and Butler, L. G. (1981). The specificity of proanthocyanidin-protein interactions. J. Biol. Chem. 256:4494–4497.
  • Haslam, E. C. (1998). Maturation - changes in astringency. In: Pratical polyphenolics: From structure to molecular recognition and physiological action. pp. Cambridge University Press.
  • Hufnagel, J. C. and Hofmann, T. (2008). Quantitative reconstruction of the nonvolatile sensometabolome of a red wine. J. Agric. Food Chem. 56:9190–9199.
  • Ji, M., Su, X., Su, X., Chen, Y., Huang, W., Zhang, J., Gao, Z., Li, C. and Lu, X. (2014). Identification of novel compounds for human bitter taste receptors. Chem. Biol. Drug Des.
  • Jobstl, E., O'connell, J., Fairclough, J. P. A. and Williamson, M. P. (2004). Molecular model for astringency produced by polyphenol/protein interactions. Biomacromolecules 5:942–949.
  • Jullian, C., Miranda, S., Zapata-Torres, G., Mendizábal, F. and Olea-Azar, C. (2007). Studies of inclusion complexes of natural and modified cyclodextrin with (+)-catechin by NMR and molecular modeling. Bioorg. Med. Chem. 15:3217–3224.
  • Kallithraka, S., Bakker, J. and Clifford, M. N. (1998). Evidence that salivary proteins are involved in astringency. J. Sens. Stud. 13:29–43.
  • Kawamoto, H., Nakatsubo, F. and Murakami, K. (1995). Quantitative determination of tannin and protein in the precipitates by high-performance liquid-chromatography. Phytochemistry 40:1503–1505.
  • Kennedy, J. A. (2008). Grape and wine phenolics: Observations and recent findings. Cien. Inv. Agr. 35:107–120.
  • Kennedy, J. A., Ferrier, J., Harbertson, J. F. and Des Gachons, C. P. (2006a). Analysis of tannins in red wine using multiple methods: Correlation with perceived astringency. Am. J. Enol. Vitic. 57:481–485.
  • Kennedy, J. A., Saucier, C. and Glories, Y. (2006b). Grape and wine phenolics: History and perspective. Am. J. Enol. Vitic. 57:239–248.
  • Kim, U., Wooding, S., Ricci, D., Jorde, L. B. and Drayna, D. (2005). Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum. Mutat. 26:199–204.
  • Kohl, S., Behrens, M., Dunkel, A., Hofmann, T. and Meyerhof, W. (2013). Amino acids and peptides activate at least five members of the human bitter taste receptor family. J. Agric. Food Chem. 61:53–60.
  • Lee, C. A. and Vickers, Z. M. (2012). Astringency of foods may not be directly related to salivary lubricity. J. Food Sci. 77:S302–S306.
  • Llaudy, M. C., Canals, R., Canals, J. M., Rozes, N., Arola, L. and Zamora, F. (2004). New method for evaluating astringency in red wine. J. Agric. Food Chem. 52:742–746.
  • Luck, G., Liao, H., Murray, N. J., Grimmer, H. R., Warminski, E. E., Williamson, M. P., Lilley, T. H. and Haslam, E. (1994). Polyphenols, astringency and proline-rich proteins. Phytochemistry 37:357–371.
  • Mateus, N., Carvalho, E., Luís, C. and De Freitas, V. (2004). Influence of the tannin structure on the disruption effect of carbohydrates on protein-tannin aggregates. Anal. Chim. Acta 513:135–140.
  • Mercurio, M. D., Dambergs, R. G., Cozzolino, D., Herderich, M. J. and Smith, P. A. (2010). Relationship between red wine grades and phenolics. 1. Tannin and total phenolics concentrations. J. Agric. Food Chem. 58:12313–12319.
  • Morice, A. H., Bennett, R. T., Chaudhry, M. A., Cowen, M. E., Griffin, S. C. and Loubani, M. (2011). Effect of bitter tastants on human bronchi. Nat. Med. 17:775.
  • Noble, A. C. (1990). Bitterness and astringency in wine. In: Bitterness in foods and beverages, pp. 145–158. Elsevier. Amsterdam.
  • Obreque-Slier, E., López-Solís, R., Peña-Neira, Á. and Zamora-Marín, F. (2010). Tannin–protein interaction is more closely associated with astringency than tannin–protein precipitation: Experience with two oenological tannins and a gelatin. Int. J. Food Sci. Technol. 45:2629–2636.
  • Oppenheim, F. G., Xu, T., Mcmillian, F. M., Levitz, S. M., Diamond, R. D., Offner, G. D. and Troxler, R. F. (1988). Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J. Biol. Chem. 263:7472–7477.
  • Ozawa, T., Lilley, T. H. and Haslam, E. (1987). Polyphenol interactions: Astringency and the loss of astringency in ripening fruit. Phytochemistry 26:2937–2942.
  • Payne, C., Bowyer, P. K., Herderich, M. and Bastian, S. E. P. (2009). Interaction of astringent grape seed procyanidins with oral epithelial cells. Food Chem. 115:551–557.
  • Peleg, H., Gacon, K., Schlich, P. and Noble, A. C. (1999). Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. J. Sci. Food Agric. 79:1123–1128.
  • Prieur, C., Rigaud, J., Cheynier, V. and Moutounet, M. (1994). Oligomeric and polymeric procyanidins from grape seeds. Phytochemistry 36:781–784.
  • Pronin, A. N., Tang, H., Connor, J. and Keung, W. (2004). Identification of ligands for two human bitter T2R receptors. Chem. Senses 29:583–593.
  • Quijada-Morín, N., Regueiro, J., Simal-Gándara, J., Tomás, E., Rivas-Gonzalo, J. C. and Escribano-Bailón, M. T. (2012). Relationship between the sensory-determined astringency and the flavanolic composition of red wines. J. Agric. Food Chem. 60:12355–12361.
  • Quijada-Morín, N., Williams, P., Rivas-Gonzalo, J. C., Doco, T. and Escribano-Bailón, M. T. (2014). Polyphenolic, polysaccharide and oligosaccharide composition of tempranillo red wines and their relationship with the perceived astringency. Food Chem. 154:44–51.
  • Ramassamy, C. (2006). Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. Eur. J. Pharmacol. 545:51–64.
  • Renaud, S. and De Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. The Lancet 339:1523–1526.
  • Ricardo-Da-Silva, J. M., Cheynier, V., Souquet, J.-M., Moutounet, M., Cabanis, J.-C. and Bourzeix, M. (1991). Interaction of grape seed procyanidins with various proteins in relation to wine fining. J. Sci. Food Agric. 57:111–125.
  • Richard, T., Vitrac, X., Merillon, J. M. and Monti, J. P. (2005). Role of peptide primary sequence in polyphenol-protein recognition: An example with neurotensin. Biochim. Biophys. Acta—General Subjects 1726:238–243.
  • Rinaldi, A., Gambuti, A. and Moio, L. (2012). Application of the SPI (saliva precipitation index) to the evaluation of red wine astringency. Food Chem. 135:2498–2504.
  • Robichaud, J. L. and Noble, A. C. (1990). Astringency and bitterness of selected phenolics in wine. J. Sci. Food Agric. 52:343–353.
  • Roland, W. S. U., Van Buren, L., Gruppen, H., Driesse, M., Gouka, R. J., Smit, G. and Vincken, J.-P. (2013). Bitter taste receptor activation by flavonoids and isoflavonoids: Modeled structural requirements for activation of hTAS2R14 and hTAS2R39. J. Agric. Food Chem. 61:10454–10466.
  • Roland, W. S. U., Vincken, J.-P., Gouka, R. J., Van Buren, L., Gruppen, H. and Smit, G. (2011). Soy isoflavones and other isoflavonoids activate the human bitter taste receptors hTAS2R14 and hTAS2R39. J. Agric. Food Chem. 59:11764–11771.
  • Rossetti, D., Bongaerts, J. H. H., Wantling, E., Stokes, J. R. and Williamson, A. M. (2009). Astringency of tea catechins: More than an oral lubrication tactile percept. Food Hydrocolloids 23:1984–1992.
  • Rossetti, D., Yakubov, G. E., Stokes, J. R., Williamson, A. M. and Fuller, G. G. (2008). Interaction of human whole saliva and astringent dietary compounds investigated by interfacial shear rheology. Food Hydrocolloids 22:1068–1078.
  • Sarneckis, C. J., Dambergs, R. G., Jones, P., Mercurio, M., Herderich, M. J. and Smith, P. A. (2006). Quantification of condensed tannins by precipitation with methyl cellulose: Development and validation of an optimised tool for grape and wine analysis. Aust. J. Grape Wine R. 12:39–49.
  • Sarni-Manchado, P., Canals-Bosch, J. M., Mazerolles, G. and Cheynier, V. (2008). Influence of the glycosylation of human salivary proline-rich proteins on their interactions with condensed tannins. J. Agric. Food Chem. 56:9563–9569.
  • Sarni-Manchado, P., Cheynier, V. and Moutounet, M. (1999). Interactions of grape seed tannins with salivary proteins. J. Agric. Food Chem. 47:42–47.
  • Scharbert, S., Holzmann, N. and Hofmann, T. (2004). Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J. Agric. Food Chem. 52:3498–3508.
  • Schwarz, B. and Hofmann, T. (2008). Is there a direct relationship between oral astringency and human salivary protein binding? Eur. Food Res. Technol. 227:1693–1698.
  • Soares, S., Kohl, S., Thalmann, S., Mateus, N., Meyerhof, W. and De Freitas, V. (2013). Different phenolic compounds activate distinct human bitter taste receptors. J. Agric. Food Chem. 61:1525–1533.
  • Soares, S., Mateus, N. and De Freitas, V. (2007). Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary a-amylase (HSA) by fluorescence quenching. J. Agric. Food Chem. 55:6726–6735.
  • Soares, S., Mateus, N. and De Freitas, V. (2012). Carbohydrates inhibit salivary proteins precipitation by condensed tannins. J. Agric. Food Chem. 60:3966–3972.
  • Soares, S., Sousa, A., Mateus, N. and De Freitas, V. (2011a). Effect of condensed tannins addition on the astringency of red wines. Chem. Senses.
  • Soares, S., Vitorino, R., OsóRio, H., Fernandes, A., Venâncio, A., Mateus, N., Amado, F. and De Freitas, V. (2011b). Reactivity of human salivary proteins families toward food polyphenols. J. Agric. Food Chem. 59:5535–5547.
  • Soares, S. I., Gonçalves, R. M., Fernandes, I., Mateus, N. and De Freitas, V. (2009). Mechanistic approach by which polysaccharides inhibit a-amylase/procyanidin aggregation. J. Agric. Food Chem. 57:4352–4358.
  • Souquet, J. M., Cheynier, V., Brossaud, F. and Moutounet, M. (1996). Polymeric proanthocyanidins from grape skins. Phytochemistry 43:509–512.
  • Sun, B., Sá, M. D., Leandro, C., Caldeira, I., Duarte, F. L. and Spranger, I. (2013). Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency. J. Agric. Food Chem. 61:939–946.
  • Troxler, R. F., Offner, G. D., Xu, T., Vanderspek, J. C. and Oppenheim, F. G. (1990). Structural relationship between human salivary histatins. J. Dent. Res. 69:2–6.
  • Vidal, S., Courcoux, P., Francis, L., Kwiatkowski, M., Gawel, R., Williams, P., Waters, E. and Cheynier, V. (2004a). Use of an experimental design approach for evaluation of key wine components on mouth-feel perception. Food Qual. Prefer. 15:209–217.
  • Vidal, S., Francis, L., Guyot, S., Marnet, N., Kwiatkowski, M., Gawel, R., Cheynier, V. and Waters, E. J. (2003). The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. J. Sci. Food Agric. 83:564–573.
  • Vidal, S., Francis, L., Noble, A., Kwiatkowski, M., Cheynier, V. and Waters, E. (2004b). Taste and mouth-feel properties of different types of tannin-like polyphenolic compounds and anthocyanins in wine. Anal. Chim. Acta 513:57–65.
  • Vidal, S., Francis, L., Williams, P., Kwiatkowski, M., Gawel, R., Cheynier, V. and Waters, E. (2004). The mouth-feel properties of polysaccharides and anthocyanins in a wine like medium. Food Chem. 85:519–525.
  • Wroblewski, K., Muhandiram, R., Chakrabartty, A. and Bennick, A. (2001). The molecular interaction of human salivary histatins with polyphenolic compounds. Eur. J. Biochem. 268:4384–4397.
  • Xiao, J. and Kai, G. (2012). A review of dietary polyphenol-plasma protein interactions: Characterization, influence on the bioactivity, and structure-affinity relationship. Crit. Rev. Food Sci. Nutr. 52:85–101.
  • Yu, P., Yeo, A. S.-L., Low, M.-Y. and Zhou, W. (2014). Identifying key non-volatile compounds in ready-to-drink green tea and their impact on taste profile. Food Chem. 155:9–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.