1,547
Views
42
CrossRef citations to date
0
Altmetric
Research Article

The nutritional role of free sialic acid, a human milk monosaccharide, and its application as a functional food ingredient

, &

References

  • Abazia, C., Ferrara, R., Corsaro, M. M., Barone, G., Coccoli, P. and Parrilli, G. (2003). Simultaneous gas-chromatographic measurement of rhamnose, lactulose and sucrose and their application in the testing gastrointestinal permeability. Clinica Chim. Acta 338:25–32.
  • Agostoni, C., Braegger, C., Decsi, T., Kolacek, S., Koletzko, B., Michaelsen, K. F., Mihatsch, W., Moreno, L. A., Puntis, J., Shamir, R., Szajewska, H., Turck, D. and van Goudoever, J. (2009). Breast-feeding: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 49:112–125.
  • Aminoff, D. (1961). Methods for the quantitative estimation of N-acetylneuraminic acid and their application to hydrolysates of sialomucoids. Biochem. J. 81:384–392.
  • Anderson, J. W., Johnstone, B. M., Remley, D. T. (1999). Breast-feeding and cognitive development: a meta-analysis. Am. J. Clin. Nutr. 70:525–535.
  • Ando, S., Chang, N. C. and Yu, R. K. (1978). High-performance thin-layer chromatography and densitometric determination of brain ganglioside compositions of several species. Anal. Biochem. 89:437–450.
  • Angata, T. and Varki, A. (2002). Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev. 102:439–469.
  • Argov, Z. and Yarom, R. (1984). “Rimmed vacuole myopathy” sparing the quadriceps. A unique disorder in Iranian Jews. J. Neurol. Sci. 64:33–43.
  • Armand, M., Hamosh, M., Mehta, N. R., Angelus, P. A., Philpott, J. R., Henderson, T. R., Dwyer, N. K., Lairon, D. and Hamosh, P. (1996). Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatr. Res. 40:429–437.
  • Baer, H. H. (1969). Richard Kuhn; 1900–1967. Adv. Carbohydr. Chem. Biochem. 24:1–12.
  • Banda, K., Gregg, C. J., Chow, R., Varki, N. M. and Varki, A. (2012). Metabolism of vertebrate amino sugars with N-glycolyl groups: mechanisms underlying gastrointestinal incorporation of the non-human sialic acid xeno-autoantigen N-glycolylneuraminic acid. J. Biol. Chem. 287:28852–28864.
  • Bardor, M., Nguyen, D. H., Diaz, S. and Varki, A. (2005). Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J. Biol. Chem. 280:4228–4237.
  • Bartholomew, B. A., Jourdian, G. W. and Roseman, S. (1973). The sialic acids XV. Transfer of sialic acid to glycoproteins by a sialyltransferase from colostrum. J. Biol. Chem. 248:5751–5762.
  • Bergfeld, A. K., Pearce, O. M. T., Diaz, S. L., Pham, T. T. and Varki, A. (2012). Metabolism of vertebrate amino sugars with N-glycolyl groups: elucidating the intracellular fate of the non-human sialic acid N-glycolylneuraminic acid. J. Biol. Chem. 287:28865–28881.
  • Bianco, A. and Melchioni, C. (2002). Neuraminic acid - structure, chemistry, biological activity. Stud. Nat. Prod. Chem. 27:103–154.
  • Blix, F. G. (1936). Über die kohlenhydratgruppen des submaxillarismucins. Hoppe-Seyler Z. Physiol. Chem. 240:2043–2054.
  • Blix, F. G., Gottschalk, A. and Klenk, E. (1957). Proposed nomenclature in the field of neuraminic and sialic acids. Nature, 179:1088.
  • Blix, F. G., Svennerholm, L. and Werner, I. (1952). The isolation of chondrosamine from gangliosides and from submaxillary mucin. Acta Chem. Scand. 6:358–362.
  • Bode, L. (2012). Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology, 22:1147–1162.
  • Brand-Miller, J., Bull, S., Miller, J. and Mcveagh, P. (1994). The oligosaccharide composition of human milk: temporal and individual variations in monosaccharide components. J. Pediatr. Gastroenterol. Nutr. 19:371–376.
  • Brinkman-Van der linden, E. C., Sjoberg, E. R., Juneja, L. R., Crocker, P. R., Varki, N. and Varki, A. (2000). Loss of N-glycolylneuraminic acid in human evolution. Implications for sialic acid recognition by siglecs. J. Biol. Chem. 275:8633–8640.
  • Brion, M.-J. A., Lawlor, D. A., Matijasevich, A., Horta, B. L., Anselmi, L., Araújo, C. L., Menezes, A. M. B., Victora, C. G. and Smith, G. D. (2011). What are the causal effects of breastfeeding on IQ, obesity and blood pressure? Evidence from comparing high-income with middle-income cohorts. Int. J. Epidemiol. 40:670–680.
  • Brunetti, P., Jourdian, G. W. and Roseman, S. (1962). The sialic acids III. Distribution and properties of animal N-acetylneuraminic aldolase. J. Biol. Chem. 237:2447.
  • Cabezas, J. A. (1973). The type of naturally occurring sialic acids. Rev. Esp. Fisiol. 29:307–322.
  • Carey, D. J. and Hirschberg, C. B. (1979). Metabolism of N-acetylneuraminic acid in mammals: isolation and characterization of CMP-N-acetylneuraminic acid. Biochem. 18:2086–2092.
  • Carlson, S. E. (1985). Human milk nonprotein nitrogen: occurrence and possible functions. Adv. Pediatr. 32:43–70.
  • Carlson, S. E. and House, S. G. (1986). Oral and intraperitoneal administration of N-acetylneuraminic acid: effect on rat cerebral and cerebellar N-acetylneuraminic acid. J. Nutr. 116:881–886.
  • Chatterjee, I. B. (1973). Evolution and the biosynthesis of ascorbic acid. Science, 182:1271–1272.
  • Chen, X. and Varki, A. (2010). Advances in the biology and chemistry of sialic acids. ACS Chem. Biol. 5:163–176.
  • Chen, Y., Pan, L. P., Liu, N., Troy, F. A. I. and Wang, B. (2014). LC-MS/MS quantification of N-acetylneuraminic acid, N-glycolylneuraminic acid and ketodeoxynonulosonic acid levels in the urine and potential relationship with dietary sialic acid intake and disease in 3- to 5-year-old children. Br. J. Nutr. 111:332–341.
  • Cho, A., Malicdan, M. C., Nonaka, I., Hayashi, Y. K., Nishino, I. and Noguchi, S. (2012). G.P.27 Muscle atrophy in the GNE myopathy mouse model is associated with oxidative stress. Neuromuscul. Disord. 22:816.
  • Cho, A., Malicdan, M. C., Nonaka, I., Hayashi, Y. K., Nishino, I. and Noguchi, S. (2013). P.3.6 Antioxidant capacity is impaired in hyposialylated myotubes of GNE myopathy. Neuromuscul. Disord. 23:757.
  • Choi, S. S. H., Baldwin, N., Wagner, V. O. I., Roy, S., Rose, J., Thorsrud, B. A., Phothirath, P. and Röhrig, C. H. (2014). Safety evaluation of the human-identical milk monosaccharide sialic acid (N-acetyl-D-neuraminic acid) in Sprague-Dawley rats. Regul. Toxicol. Pharmacol. 70:482–491.
  • Chou, H. H., Hayakawa, T., Diaz, S., Krings, M., Indriati, E., Leakey, M., Paabo, S., Satta, Y., Takahata, N. and Varki, A. (2002). Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc. Natl. Acad. Sci. USA, 99:11736–11741.
  • Chou, H. H., Takematsu, H., Diaz, S., Iber, J., Nickerson, E., Wright, K. L., Muchmore, E. A., Nelson, D. L., Warren, S. T. and Varki, A. (1998). A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc. Nat. Acad. Sci. USA, 95:11751–11756.
  • Chrostek, L., Cylwik, B., Gindzienska-Sieskiewicz, E., Gruszewska, E., Szmitkowski, M. and Sierakowski, S. (2014). Sialic acid level reflects the disturbances of glycosylation and acute-phase reaction in rheumatic diseases. Rheumatol. Int. 34:393–399.
  • Cohen, M. and Varki, A. (2010). The sialome - far more than the sum of its parts. OMICS, 14:455–464.
  • Colombo, J. P., Garcia-Rodenas, C., Guesry, P. R., and Rey, J. (2003). Potential effects of supplementation with amino acids, choline or sialic acid on cognitive development in young infants. Acta Paediatr. Suppl. 92:42–46.
  • Comb, D. G. and Roseman, S. (1960). The sialic acids. I. The structure and enzymatic synthesis of N-acetylneuraminic acid. J. Biol. Chem. 235:2529–2537.
  • Corfield, A. P., Wagner, S. A., O'Donnell, L. J., Durdey, P., Mountford, R. A. and Clamp, J. R. (1993a). The roles of enteric bacterial sialidase, sialate O-acetyl esterase and glycosulfatase in the degradation of human colonic mucin. Glycoconj. J. 10:72–81.
  • Corfield, A. P., Wagner, S. A., Safe, A., Mountford, R. A., Clamp, J. R., Kamerling, J. P., Vliegenthart, J. F. and Schauer, R. (1993c). Sialic acids in human gastric aspirates: detection of 9-O-lactyl- and 9-O-acetyl-N-acetylneuraminic acids and a decrease in total sialic acid concentration with age. Clin. Sci. 84:573–579.
  • Cornforth, J. W., Firth, M. E. and Gottschalk, A. (1958). The synthesis of N-acetylneuraminic acid. Biochem. J. 68:57–61.
  • Crocker, P. R., Clark, E. A., Filbin, M., Gordon, S., Jones, Y., Kehrl, J. H., Kelm, S., Le douarin, N., Powell, L., Roder, J., Schnaar, R. L., Sgroi, D. C., Stamenkovic, K., Schauer, R., Schachner, M., Van den berg, T. K., Van der Merwe, P. A., Watt, S. M. and Varki, A. (1998). Siglecs: a family of sialic-acid binding lectins. Glycobiology, 8:v.
  • Crocker, P. R., Paulson, J. C. and Varki, A. (2007). Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7:255–266.
  • Crook, M. (1993). The determination of plasma or serum sialic acid. Clin. Biochem. 26:31–38.
  • D'Alessandro, S., Curbelo, H. M., Tumilasci, O. R., Tessler, J. A. and Houssay, A. B. (1989). Changes in human parotid salivary protein and sialic acid levels during pregnancy. Arch. Oral Biol. 34:829–831.
  • Davies, L. R., Pearce, O. M., Tessier, M. B., Assar, S., Smutova, V., Pajunen, M., Sumida, M., Sato, C., Kitajima, K., Finne, J., Gagneux, P., Pshezhetsky, A., Woods, R. and Varki, A. (2012). Metabolism of vertebrate amino sugars with N-glycolyl groups: resistance of alpha-2–8-linked N-glycolylneuraminic acid to enzymatic cleavage. J. Biol. Chem. 287:28917–28931.
  • Davies, L. R. L. and Varki, A. (2013). Why Is N-Glycolylneuraminic acid rare in the vertebrate brain? Top. Curr. Chem.
  • De vries, G. H. and Barondes, S. H. (1971). Incorporation of [14C]N-acetyl neuraminic acid into brain glycoproteins and gangliosides in vivo. J. Neurochem. 18:101–105.
  • Den Tandt, W. R., Adriaenssens, K. and Scharpe, S. (1987). Characteristics of human intestinal acid sialidase. Enzyme, 37:155–158.
  • Diaz, S. L., Padler-Karavani, V., Ghaderi, D., Hurtado-Ziola, N., Yu, H., Chen, X., Brinkman-Van der linden, E. C., Varki, A. and Varki, N. M. (2009). Sensitive and specific detection of the non-human sialic Acid N-glycolylneuraminic acid in human tissues and biotherapeutic products. PLoS One, 4:e4241.
  • DICKSON, J. J. and Messer, M. (1978). Intestinal neuraminidase activity of suckling rats and other mammals. Relationship to the sialic acid content of milk. Biochem. J. 170:407–413.
  • Downing, J. A., Wilkinson, S. J., Wang, W., Brand-Miller, J.-C. and Bryden, W. L. (2001). Uptake of N-acetylneuraminic acid 6–14C (sialic acid) into the brain of neonatal piglets. Proc. Nutr. Soc. Austral. 25:S39.
  • Du, J., Meledeo, M. A., Wang, Z., Khanna, H. S., Paruchuri, V. D. and Yarema, K. J. (2009). Metabolic glycoengineering: sialic acid and beyond. Glycobiology, 19:1382–1401.
  • Daali, Y., Cherkaoui, S. and Veuthey, J. L. (2001). Capillary electrophoresis and high-performance anion exchange chromatography for monitoring caseinoglycomacropeptide sialylation. J. Pharm. Biomed. Anal. 24:849–856.
  • Eckhardt, M., Muhlenhoff, M., Bethe, A. and Gerardy-Schahn, R. (1996). Expression cloning of the Golgi CMP-sialic acid transporter. Proc. Natl. Acad. Sci. USA, 93:7572–7576.
  • Eguchi, H., Ikeda, Y., Ookawara, T., Koyota, S., Fujiwara, N., Honke, K., Wang, P. G., Taniguchi, N. and Suzuki, K. (2005). Modification of oligosaccharides by reactive oxygen species decreases sialyl lewis x-mediated cell adhesion. Glycobiology, 15:1094–1101.
  • Eisenberg, I., Avidan, N., Potikha, T., Hochner, H., Chen, M., Olender, T., Barash, M., Shemesh, M., Sadeh, M., Grabov-Nardini, G., Shmilevich, I., Friedmann, A., Karpati, G., Bradley, W. G., Baumbach, L., Lancet, D., Asher, E. B., Beckmann, J. S., Argov, Z. and Mitrani-Rosenbaum, S. (2001). The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat. Genet. 29:83–87.
  • Farvid, M. S., Cho, E., Chen, W. Y., Eliassen, A. H. and Willett, W. C. (2014). Dietary protein sources in early adulthood and breast cancer incidence: prospective cohort study. Br. Med. J. 348:g3437.
  • Flippen, J. L. (1973). The crystal structure of N-acetylneuraminic acid dihydrate (sialic acid), C11H19NO9.2H2O. Acta Crystallogr. B29:1881–1886.
  • Fryer, H. J. and Hockfield, S. (1996). The role of polysialic acid and other carbohydrate polymers in neural structural plasticity. Curr. Opin. Neurobiol. 6:113–118.
  • Gale, C. R. and Martyn, C. N. (1996). Breastfeeding, dummy use, and adult intelligence. Lancet, 347:1072–1075.
  • Galeotti, F., Coppa, G. I. V., Zampini, L., Maccari, F., Galeazzi, T., Padella, L., Santoro, L., Gabrielli, O. and Volpi, N. (2012). On-line high-performance liquid chromatography-fluorescence detection-electrospray ionization-mass spectrometry profiling of human milk oligosaccharides derivatized with 2-aminoacridone. Anal. Biochem. 430:97–104.
  • Geoff, D., Batty, G. D. and Deary, I. J. (2006). Effect of breast feeding on intelligence in children: prospective study, sibling pairs analysis, and meta-analysis. BMJ, 333:945.
  • German, J. B., Dillard, C. J. and Ward, R. E. (2002). Bioactive components in milk. Curr. Opin. Clin. Nutr. Metab. Care, 5:653–658.
  • Ghaderi, D., Springer, S. A., Ma, F., Cohen, M., Secrest, P., Taylor, R. E., Varki, A. and Gagneux, P. (2011). Sexual selection by female immunity against paternal antigens can fix loss of function alleles. Proc. Nat. Acad. Sci. USA, 108:17743–17748.
  • Ghaderi, D., Taylor, R. E., Padler-Karavani, V., Diaz, S. and Varki, A. (2010). Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat. Biotechnol. 28:863–867.
  • Ghaderi, D., Zhang, M., Hurtado-Ziola, N. and Varki, A. (2012). Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol. Genet. Eng. Rev. 28:147–176.
  • Ghosh, N. K., Kotowitz, L. and Fishman, W. H. (1968). Neuraminidase in human intestinal mucosa. Biochim. Biophys. Acta, 167:201–204.
  • Guerrero, A., Lerno, L., Barile, D. and Lebrilla, C. B. (2015). Top-down analysis of highly post-translationally modified peptides by fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 26:453–459.
  • György, P., Kuhn, R., Norris, R. F., Rose, C. S. and Zilliken, F. (1952). A hitherto unrecognized biochemical difference between human milk and cow's milk. AMA Am. J. Dis. Child, 84:482–484.
  • Han, N. S., Kim, T. J., Park, Y. C., Kim, J. and Seo, J. H. (2011). Biotechnological production of human milk oligosaccharides. Biotechnol. Adv.
  • Hanisch, F. G., Grossmann, M., Joshi, P. R., Zierz, S., Weidemann, W., Horstkorte, R., Holzhausen, H.-J., Stoltenburg, G. and Weis, J. (2013). Sialylation and muscle performance: sialic acid is a marker of muscle ageing. PLoS One, 8:e80520.
  • Hara, S., Takemori, Y., Yamaguchi, M., Nakamura, M. and Ohkura, Y. (1987). Fluorometric high-performance liquid chromatography of N-acetyl- and N-glycolylneuraminic acids and its application to their microdetermination in human and animal sera, glycoproteins, and glycolipids. Anal. Biochem. 164:138–145.
  • Hara, S., Yamaguchi, M., Takemori, Y., Nakamura, M. and Ohkura, Y. (1986). Highly sensitive determination of N-acetyl-and N-glycolylneuraminic acids in human serum and urine and rat serum by reversed-phase liquid chromatography with fluorescence detection. J. Chromatogr. 377B:111–119.
  • Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M. A., Samyn-Petit, B., Julien, S. and Delannoy, P. (2001). The human sialyltransferase family. Biochimie, 83:727–737.
  • Haverkamp, J., Schauer, R. and Wember, M. (1976). Neuraminic acid derivatives newly discovered in humans: N-Acetyl-9-O-L-lactoylneuraminic acid, N,9-O-Diacetylneuraminic acid and N-Acetyl-2,3-dehydro-2-deoxyneuraminic acid. Hoppe Seyler Z. Physiol. Chem. 357:1699–1705.
  • Hayakawa, K., De, F. C., Watanabe, T., Tanaka, T., Iinuma, K., Nihei, K., Higuchi, S., Ezoe, T., Hibi, I. and Kurosawa, K. (1993). Determination of free N-acetylneuraminic acid in human body fluids by high-performance liquid chromatography with fluorimetric detection. J. Chromatogr. 620:25–31.
  • Hayakawa, T., Aki, I., Varki, A., Satta, Y. and Takahata, N. (2006). Fixation of the human-specific CMP-N-acetylneuraminic acid hydroxylase pseudogene and implications of haplotype diversity for human evolution. Genetics 172:1139–1146.
  • Hayakawa, T., Satta, Y., Gagneux, P., Varki, A. and Takahata, N. (2001). Alu-mediated inactivation of the human CMP-N-acetylneuraminic acid hydroxylase gene. Proc. Nat. Acad. Sci. USA, 98:11399–11404.
  • Hayden, E. C. (2014). Technology: the $1,000 genome. Nature, 507:294–295.
  • Hedlund, M., Padler-Karavani, V., Varki, N. M. and Varki, A. (2008). Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc. Natl. Acad. Sci. USA, 105:18936–18941.
  • Heine, W., Wutzke, K. D. and Radke, M. (1993). Sialic acid in breast milk and infant formula food. Monatsschr. Kinderheilkd. 141:946–950.
  • Hennet, T. (2009). From glycosylation disorders back to glycosylation: what have we learned? Biochim. Biophys. Acta, 1792:921–924.
  • Hess, H. H. and Rolde, E. (1964). Fluorometric Assay of Sialic Acid in Brain Gangliosides. J. Biol. Chem. 239:3215–3220.
  • Higashi, H., Naiki, M., Matuo, S. and Okouchi, K. (1977). Antigen of “serum sickness” type of heterophile antibodies in human sera: indentification as gangliosides with N-glycolylneuraminic acid. Biochem. Biophys. Res. Commun. 79:388–395.
  • Hinderlich, S., Stäsche, R., Zeitler, R. and Reutter, W. (1997). A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetylmannosamine kinase. J. Biol. Chem. 272:24319–24324.
  • Hinderlich, S., Weidemann, W., Yardeni, T., Horstkorte, R. and Huizing, M. (2013). UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE): a master regulator of sialic acid synthesis. Top. Curr. Chem. July 11 [Epub ahead of print].
  • Ho, C. H., Hsu, S. P., Yang, C. C., Lee, Y. H. and Chien, C. T. (2009). Sialic acid reduces acute endotoxemia-induced liver dysfunction in the rat. Shock, 32:228–235.
  • Hoover, J. R. E., Braun, G. A. and György, P. (1953). Neuraminic acid in mucopolysaccharides of human milk. >Arch. Biochem. Biophys. 9:216–217.
  • Horta, B. L., Bahl, R., Martinés, J. C. and Victora, C. G. (2007). Evidence on the long-term effects of breastfeeding. WHO – Systemat. Rev. Meta-Analys., Available at: www.who.int/iris/bitstream/10665/43623/1/9789241595230_eng.pdf. Accessed January 2015.
  • Howe, C., Lee, L. T. and Rose, H. M. (1961). Collocalia mucoid: a substrate for myxovirus neuraminidase. Arch. Biochem. Biophys. 95:512–520.
  • Huizing, M., Carrillo-Carrasco, N., Malicdan, M. C. V., Noguchi, S., Gahl, W. A., Mitrani-Rosenbaum, S., Argov, Z. and Nishino, I. (2014). GNE myopathy: new name and new mutation nomenclature. Neuromuscul. Disord. 24:387–389.
  • Hurd, C. D. (1970). The acidities of ascorbic and sialic acids. J. Chem. Edu. 47.
  • Hurum, D. C. and Rohrer, J. S. (2012). Determination of sialic acids in infant formula by chromatographic methods: a comparison of high-performance anion-exchange chromatography with pulsed amperometric detection and ultra-high-performance liquid chromatography methods. J. Dairy Sci. 95:1152–1161.
  • Iacovou, M. and Sevilla-Sanz, A. (2010). The effect of breastfeeding on children's cognitive development. Institute for Social & Economic Research - ISER Working Paper Series: 2010–40. Available at www.iser.essex.ac.uk/files/iser_working_papers/2010-40.pdf
  • Iijima, R., Ichikawa, T. and Yamazaki, M. (2009). Sialic acid attenuates the cytotoxicity of the lipid hydroperoxides HpODE and HpETE. Carbohydr. Res. 344:933–935.
  • Iijima, R., Takahashi, H., Ikegami, S. and Yamazaki, M. (2007). Characterization of the reaction between sialic acid (N-acetylneuraminic acid) and hydrogen peroxide. Biol. Pharm. Bull. 30:580–582.
  • Iijima, R., Takahashi, H., Namme, R., Ikegami, S. and Yamazaki, M. (2004). Novel biological function of sialic acid (N-acetylneuraminic acid) as a hydrogen peroxide scavenger. FEBS Lett. 561:163–166.
  • Inoue, S., Sato, C. and Kitajima, K. (2010). Extensive enrichment of N-glycolylneuraminic acid in extracellular sialoglycoproteins abundantly synthesized and secreted by human cancer cells. Glycobiology, 20:752–762.
  • Irie, A., Koyama, S., Kozutsumi, Y., Kawasaki, T. and Suzuki, A. (1998). The molecular basis for the absence of N-glycolylneuraminic acid in humans. J. Biol. Chem. 273:15866–15871.
  • Ishikawa, M. and Koizumi, S. (2010). Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli. Carbohydr. Res. 345:2605–2609.
  • Jay, C. M., Levonyak, N., Nemunaitis, G., Maples, P. B. and Nemunaitis, J. (2009). Hereditary Inclusion Body Myopathy (HIBM2). Gene Reg. Syst. Biol. 2009:181–190.
  • Jefford, C. W., Boschung, A. F., Bolsman, T. A. B. M., Moriatry, R. M. and Melnick, B. (1976). Reaction of singlet oxygen with alpha-ketocarboxylic acids. Oxidative decarboxylation and peroxyacid formation. J. Am. Chem. Soc. 98:1017–1018.
  • Jourdian, G. W., Dean, L. and Roseman, S. (1971). The sialic acids. XI. A periodate-resorcinol method for the quantitative estimation of free sialic acids and their glycosides. J. Biol. Chem. 246:430–435.
  • Kakkis, E., Maurer, M., Shah, P., Donikyan, M. and Ahmed, R. (2012). T.P.13 A phase 1 safety and pharmacokinetic study of sialic acid-extended release tablets in patients with Hereditary Inclusion Body Myopathy (HIBM or GNE myopathy). Neuromuscul. Disord. 22:850.
  • Kamerling, J. P., Vliegenthard, J. F. G., Schauer, R., Strecker, G. and Montreuil, J. (1975). Isolation and identification of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid from the urine of a patient with sialuria. Eur. J. Biochem. 56:253–258.
  • Karamanos, N. K., Wikström, B., Antonopoulos, C. A. and Hjerpe, A. (1990). Determination of N-acetyl- and N-glycolylneuraminic acids in glycoconjugates by reversed-phase high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. 503A:421–429.
  • Karim, M. and Wang, B. (2006). Is sialic acid in milk food for the brain? Cab rev. 1:18–29.
  • Karunanithi, D., Radhakrishna, A. and Biju, V. M. (2013). Quantitative determination of sialic acid in Indian milk and milk products. Int. J. Appl. Biol. Pharm. Technol. 4:318–323.
  • Kathan, R. H. and Weeks, D. I. (1969). Structure studies of collocalia mucoid. I. Carbohydrate and amino acid composition. Arch. Biochem. Biophys. 134:572–576.
  • Kean, E. L., Munster-Kuhnel, A. K. and Gerardy-Schahn, R. (2004). CMP-sialic acid synthetase of the nucleus. Biochim. Biophys. Acta 1673:56–65.
  • Kelm, S. and Schauer, R. (1997). Sialic acids in molecular and cellular interactions. Int. Rev. Cytol. 175:137–240.
  • Keppler, O. T., Hinderlich, S., Langner, J., Schwartz-Albiez, R., Reutter, W. and Pawlita, M. (1999). UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science:1372–1376.
  • Kim, M. J., Hennen, W. J., Sweers, H. M. and Wong, C. H. (1988). Enzymes in carbohydrate synthesis: N-acetylneuraminic acid aldolase catalyzed reactions and preparation of N-acetyl-2-deoxy-D-neuraminic acid derivatives. J. Am. Chem. Soc. 110:6481–6486.
  • Kiss, J. Z. and Rougon, G. (1997). Cell biology of polysialic acid. Curr. Opin. Neurobiol. 7:640–646.
  • Kiyohara, M., Tanigawa, K., Chaiwangsri, T., Katayama, T., Ashida, H. and Yamamoto, K. (2011). An exo-alpha-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology, 21:437–447.
  • Klenk, E. (1935). Über die natur der phosphatide und anderer lipoide des gehirns und der leber bei der Niemann-Pickschen krankheit. [12. Mitteilung über phosphatide.]. Hoppe-Seyler Z. Physiol. Chem. 235:24.
  • Klenk, E. (1941). Neuraminsäure, das spaltprodukt eines neuen gehirnlipoids. Hoppe-Seyler Z. Physiol. Chem. 268:50–58.
  • Klenk, E., Langerbeins, H. and Schumann, E. (1941). Über die verteilung der neuraminsäure im gehirn (mit einer mikromethode zur quantitativen bestimmung der substanz im nervengewebe). Hoppe-Seyler Z. Physiol. Chem. 270:20185–20193.
  • Klepach, T., Carmichael, I. and Serianni, A. S. (2008). 13C-labeled N-acetyl-neuraminic acid in aqueous solution: detection and quantification of acyclic keto, keto hydrate, and enol forms by 13C NMR spectroscopy. J. Am. Chem. Soc. 130:11892–11900.
  • Kohler, H., Donarski, S., Stocks, B., Parret, A., Edwards, C. and Schroten, H. (2002). Antibacterial characteristics in the feces of breast-fed and formula-fed infants during the first year of life. J. Pediatr. Gastroenterol. Nutr. 34:188–193.
  • Kornfeld, S., Kornfeld, R., Neufeld, E. F. and O'Brien, P. J. (1964). The feedback control of sugar nucleotide biosynthesis in liver. Proc. Nat. Acad. Sci. USA, 52:371–379.
  • Koski, T. and Liukkonen, L. (1937). Über den einfluss der fütterungsmethoden auf die azidität des säuglingsmagens. Acta Pædiatr. 1–6.
  • Kovar, M. G., Serdula, M. K., Marks, J. S. and Fraser, D. W. (1984). Review of the epidemiologic evidence for an association between infant feeding and infant health. Pediatr. 74:615–638.
  • Kragl, U., Gygax, D., Ghisalba, O. and Wandrey, C. (1991). Enzymatic two-step synthesis of N-acetyl-neuraminic acid in the enzyme membrane reactor. Angew. Chem. Int. Ed. Engl. 30:827–828.
  • Kuhn, R. (1952). Vitamine der milch. Angew. Chem. 64:493–500.
  • Kuhn, R. and Baschang, G. 1962a. Aminozucker-synthesen, Xxv. Synthese der lactaminsäure. Justus Liebigs Annal. Chem. 659:156–163.
  • Kuhn, R. and Baschang, G. 1962b. Die konfiguration der sialinsäuren am C-atom 4. Chem. Ber. 95:2384–2385.
  • Kuhn, R. and Brossmer, R. (1957). Die konfiguration der lactaminsäure. Angew. Chem. 69:534.
  • Kuhn, R. and Brossmer, R. (1959). Über das durch viren der influenza-gruppe spaltbare trisaccharid der milch. Chem. Ber. 92:1667–1671.
  • Kuhn, R. and Brossmer, R. (1962). Die konfiguration der sialinsäuren. Angew. Chem. 74:252–253.
  • Kuhn, R., Brossmer, R. and Schulz, W. (1954). Über die prosthetische gruppe der mucoproteine des kuh-colostrums. Chem. Ber. 87:123–127.
  • Kuizenga, A. B., Van Agtmaal, E. J., Van Haeringen, N. J. and Kijlstra, A. (1990). Sialic acid in human tear fluid. Exp. Eye. Res. 50:45–50.
  • Kunz, C. and Rudloff, S. (1993). Biological functions of oligosaccharides in human milk. Acta Paediatr. 82:903–912.
  • Lacomba, R., Salcedo, J., Alegria, A., Barbera, R., Hueso, P., Matencio, E. and Lagarda, M. J. 2011a. Effect of simulated gastrointestinal digestion on sialic acid and gangliosides present in human milk and infant formulas. J. Agricult. Food Chem. 59:5755–5762.
  • Lacomba, R., Salcedo, J., Alegria, A., Barbera, R., Hueso, P., Matencio, E. and Lagarda, M. J. 2011g. Sialic acid (N-acetyl and N-glycolylneuraminic acid) and ganglioside in whey protein concentrates and infant formulae. Int. Dairy J. 21:887–895.
  • Lacomba, R., Salcedo, J., Alegria, A., Jesus, L. M., Barbera, R. and Matencio, E. (2010). Determination of sialic acid and gangliosides in biological samples and dairy products: a review. J. Pharmaceut. Biomed. Anal. 51:346–357.
  • Lamari, F. N. and Karamanos, N. K. (2002). Separation methods for sialic acids and critical evaluation of their biologic relevance. J. Chromatogr. 781B:3–19.
  • Lee, H., Garrido, D., Mills, D. A. and Barile, D. (2014). Hydrolysis of milk gangliosides by infant-gut associated bifidobacteria determined by microfluidic chips and high-resolution mass spectrometry. Electrophoresis, 35:1742–1750.
  • Lewis, A. L. and Varki, A. (2009). Evolutionary considerations in studying the sialome: sialic acids and the host – pathogen interface. In: Bioinformatics for Glycobiology and Glycomics: An Introduction, Von der Lieth, C.-W., Lütteke, T. and Frank, M., Eds. John Wiley & Sons, Chichester, UK.
  • Li, H. and Fan, X. (2014). Quantitative analysis of sialic acids in Chinese conventional foods by Hplc-Fld. Open J. Prev. Med. 4:57–63.
  • Li, Y. and Chen, X. (2012). Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl. Microbiol. Biotechnol. 94:887–905.
  • Lin, B. X., Zhang, Z. J., Liu, W. F., Dong, Z. Y. and Tao, Y. (2013). Enhanced production of N-acetyl-D-neuraminic acid by multi-approach whole-cell biocatalyst. Appl. Microbiol. Biotechnol. 97:4775–4784.
  • Lorentz, K., Weiss, T. and Kraas, E. (1986). Sialic acid in human serum and cerebrospinal fluid. Comparison of methods and reference values. J. Clin. Chem. Clin. Biochem. 24:189–198.
  • Lucas, A., Morley, R., Cole, T. J., Lister, G. and Leeson-Payne, C. (1992). Breast milk and subsequent intelligence quotient in children born preterm. Lancet, 339:261–264.
  • Maffei, H. V. L. and Nóbrega, F. J. (1975). Gastric pH and microflora of normal and diarrhoeic infants. Gut, 16:719–726.
  • Mahmoudian, M., Noble, D., Drake, C. S., Middleton, R. F., Montgomery, D. S., Piercey, J. E., Ramlakhan, D., Todd, M. and Dawson, M. J. (1997). An efficient process for production of N-acetylneuraminic acid using N-acetylneuraminic acid aldolase. Enzyme Microb. Technol. 20:393–400.
  • Malicdan, M. C. V., Noguchi, S., Hayashi, Y. K., Nonaka, I. and Nishino, I. (2009). Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat. Med. 15:690–695.
  • Malicdan, M. C. V., Noguchi, S. and Nishino, I. (2010). A preclinical trial of sialic acid metabolites on distal myopathy with rimmed vacuoles/hereditary inclusion body myopathy, a sugar-deficient myopathy: a review. Ther. Adv. Neurol. Disord. 3:127–135.
  • Malicdan, M. C. V., Noguchi, S., Tokutomi, T., Goto, Y.-I., Nonaka, I., Hayashi, Y. K. and Nishino, I. (2012). Peracetylated N-acetylmannosamine, a synthetic sugar molecule, efficiently rescues muscle phenotype and biochemical defects in mouse model of sialic acid-deficient myopathy. J. Biol. Chem. 287:2689–2705.
  • Malpress, F. H. and Hytten, F. E. (1958). The oligosaccharides of human milk. Biochem. J. 68:708–717.
  • Malykh, Y. N., Schauer, R. and Shaw, L. (2001). N-Glycolylneuraminic acid in human tumours. Biochimie, 83:623–634.
  • Manju, V., Balasubramanian, V. and Nalini, N. (2002). Oxidative stress and tumor markers in cervical cancer patients. J. Biochem. Mol. Biol. Biophys. 6:387–390.
  • Marcone, M. F. (2005). Characterization of the edible bird's nest the “Caviar of the East”. Food Res. Int. 38:1125–1134.
  • Martin-Sosa, S., Martin, M. J., Garcia-Pardo, L. A. and Hueso, P. (2003). Sialyloligosaccharides in human and bovine milk and in infant formulas: variations with the progression of lactation. J. Dairy Sci. 86:52–59.
  • Martin-Sosa, S., Martin, M. J., Garcia-Pardo, L. A. and Hueso, P. (2004). Distribution of sialic acids in the milk of spanish mothers of full term infants during lactation. J. Pediatr. Gastroenterol. Nutr. 39:499–503.
  • Martin, M. J., Martin-Sosa, S., Garcia-Pardo, L. A. and Hueso, P. (2001). Distribution of bovine milk sialoglycoconjugates during lactation. J. Dairy Sci. 84:995–1000.
  • Martin, M. J., Vazquez, E. and Rueda, R. (2007). Application of a sensitive fluorometric HPLC assay to determine the sialic acid content of infant formulas. Anal. Bioanal. Chem. 387:2943–2949.
  • Martin, P. T. and Freeze, H. H. (2003). Glycobiology of neuromuscular disorders. Glycobiology, 13:67R–75R.
  • Maru, I., Ohnishi, J., Ohta, Y. and Tsukada, Y. (1998). Simple and `large-scale production of N-acetylneuraminic acid from N-acetyl-d-glucosamine and pyruvate using N-acyl-d-glucosamine 2-epimerase and N-acetylneuraminate lyase. Carbohydr. Res. 306:575–578.
  • Maru, I., Ohnishi, J., Ohta, Y. and Tsukada, Y. (2002). Why is sialic acid attracting interest now? Complete enzymatic synthesis of sialic acid with N-acylglucosamine 2-epimerase. J. Biosci. Bioeng. 93:258–265.
  • Mcjarrow, P., Schnell, N., Jumpsen, J. and Clandinin, T. (2009). Influence of dietary gangliosides on neonatal brain development. Nutr. Rev. 67:451–463.
  • Mcjarrow, P. and Van Amelsfort-Schoonbeek, J. (2004). Bovine sialyl oligosaccharides: seasonal variations in their concentrations in milk, and a comparison of the colostrum of Jersey and Friesian cows. Int. Dairy J. 14:571–579.
  • Mcnaught, A. D. (1996). Nomenclature of carbohydrates (IUPAC Recommendations 1996). Pure Appl. Chem. 68:1919–2008.
  • Meesmann, H. M., Fehr, E.-M., Kierschke, S., Herrmann, M., Bilyy, R., Heyder, P., Blank, N., Krienke, S., Lorenz, H.-M. and Schiller, M. (2010). Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. J. Cell Sci. 123:3347–3356.
  • Mehdi, M. M., Singh, P. and Rizvi, S. I. (2012). Erythrocyte sialic acid content during aging in humans: correlation with markers of oxidative stress. Dis. Markers, 32:179–186.
  • Merrick, J. M., Zadarlik, K. and Milgrom, F. (1978). Characterization of the Hanganutziu-Deicher (serum-sickness) antigen as gangliosides containing N-glycolylneuraminic acid. Int. Arch. Allergy Appl. Immunol. 57:477–480.
  • Micha, R., Wallace, S. K. and Mozaffarian, D. (2010). Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis. Circulation, 121:2271–2283.
  • Monti, E., Bonten, E., D'Azzo, A., Bresciani, R., Venerando, B., Borsani, G., Schauer, R. and Tettamanti, G. (2010). Sialidases in vertebrates: a family of enzymes tailored for several cell functions. Adv. Carbohydr. Chem. Biochem. 64:403–479.
  • Montreuil, J., Biserte, G., Strecker, G., Spik, G., Fontaine, G. and Farriaux, J. P. (1968). [Description of a new type of melituria, called sialuria]. >Clin. Chim. Acta 21:61–69.
  • Morgan, B. L. and Winick, M. (1980). Effects of administration of N-acetylneuraminic acid (NANA) on brain NANA content and behavior. J. Nutr. 110:416–424.
  • Morgan, B. L. and Winick, M. (1981). The subcellular localization of administered N-acetylneuraminic acid in the brains of well-fed and protein restricted rats. Br. J. Nutr. 46:231–238.
  • Mori-Yoshimura, M., Monma, K., Suzuki, N., Aoki, M., Kumamoto, T., Tanaka, K., Tomimitsu, H., Nakano, S., Sonoo, M., Shimizu, J., Sugie, K., Nakamura, H., Oya, Y., Hayashi, Y. K., Malicdan, M. C., Noguchi, S., Murata, M. and Nishino, I. (2012). Heterozygous UDP-GlcNAc 2-epimerase and N-acetylmannosamine kinase domain mutations in the GNE gene result in a less severe GNE myopathy phenotype compared to homozygous N-acetylmannosamine kinase domain mutations. J. Neurol. Sci. 318:100–105.
  • Mori-Yoshimura, M., Oya, Y., Yajima, H., Yonemoto, N., Kobayashi, Y., Hayashi, Y. K., Noguchi, S., Nishino, I. and Murata, M. (2014). GNE myopathy: a prospective natural history study of disease progression. Neuromuscul. Disord. 24:380–386.
  • Morrissey, P. A. (1973). The N-acetyl neuraminic acid content of the milk of various species. J. Dairy Res. 40:421–425.
  • Muchmore, E. A., Diaz, S. and Varki, A. (1998). A structural difference between the cell surfaces of humans and the great apes. Am. J. Phys. Anthropol. 107:187–98.
  • Muchmore, E. A., Milewski, M., Varki, A. and Diaz, S. (1989). Biosynthesis of N-glycolyneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool. J. Biol. Chem. 264:20216–20223.
  • Muehlenhoff, M., Rollenhagen, M., Werneburg, S., Gerardy-Schahn, R. and Hildebrandt, H. (2013). Polysialic acid: versatile modification of Ncam, SynCAM 1 and Neuropilin-2. Neurochem. Res. 38:1134–1143.
  • Murrey, H. E. and Hsieh-Wilson, L. C. (2008). The chemical neurobiology of carbohydrates. Chem. Rev. 108:1708–1731.
  • Münster, A. K., Eckhardt, M., Potvin, B., Mühlenhoff, M., Stanley, P. and Gerardy-Schahn, R. (1998). Mammalian cytidine 5′-monophosphate N-acetylneuraminic acid synthetase: a nuclear protein with evolutionarily conserved structural motifs. Proc. Natl. Acad. Sci. USA, 95:9140–9145.
  • Nakano, K., Nakano, T., Ahn, D. U. and Sim, J. S. (1994). Sialic acid contents in chicken eggs and tissues. Can. J. Animal Sci. 74:601–606.
  • Nakano, T., Sugawara, M. and Kawakami, H. (2001). Sialic acid in human milk: composition and functions. Acta Paediatr. Taiwanica, 42:11–17.
  • Neelima, Rao, P. S., Sharma, R. and Rajput, Y. S. (2012). Direct estimation of sialic acid in milk and milk products by fluorimetry and its application in detection of sweet whey adulteration in milk. J. Dairy Res. 79:495–501.
  • Neeser, J. R., Golliard, M. and Del Vedovo, S. (1991). Quantitative determination of complex carbohydrates in bovine milk and in milk-based infant formulas. J. Dairy Sci. 74:2860–2871.
  • Nemunaitis, G., Jay, C. M., Maples, P. B., Gahl, W. A., Huizing, M., Yardeni, T., Tong, A. W., Phadke, A. P., Pappen, B. O., Bedell, C., Allen, H., Hernandez, C., Templeton, N. S., Kuhn, J., Senzer, N. and Nemunaitis, J. (2011). Hereditary inclusion body myopathy: single patient response to intravenous dosing of GNE gene lipoplex. Hum. Gene Ther. 22:1331–1341.
  • Neyra, C., Paladino, J. and Le Borgne, M. (2014). Oxidation of sialic acid using hydrogen peroxide as a new method to tune the reducing activity. Carbohydr. Res. 386:92–98.
  • Ng, P. S., Bohm, R., Hartley-Tassell, L. E., Steen, J. A., Wang, H., Lukowski, S. W., Hawthorne, P. L., Trezise, A. E., Coloe, P. J., Grimmond, S. M., Haselhorst, T., Von Itzstein, M., Paton, A. W., Paton, J. C. and Jennings, M. P. (2014). Ferrets exclusively synthesize Neu5Ac and express naturally humanized influenza A virus receptors. Nat. Commun. 5:5750.
  • Nguyen, D. H., Hurtado-Ziola, N., Gagneux, P. and Varki, A. (2006). Loss of Siglec expression on T lymphocytes during human evolution. Proc. Nat. Acad. Sci. Usa, 103:7765–7770.
  • Nguyen, D. H., Tangvoranuntakul, P. and Varki, A. (2005). Effects of natural human antibodies against a nonhuman sialic acid that metabolically incorporates into activated and malignant immune cells. J. Immunol. 175:228–236.
  • Niethamer, T. K., Yardeni, T., Leoyklang, P., Ciccone, C., Astiz-Martinez, A., Jacobs, K., Dorward, H. M., Zerfas, P. M., Gahl, W. A. and Huizing, M. (2012). Oral monosaccharide therapies to reverse renal and muscle hyposialylation in a mouse model of GNE myopathy. Mol. Genet. Metab. 107:748–755.
  • Nishino, I., Carrillo-Carrasco, N. and Argov, Z. (2015). GNE myopathy: current update and future therapy. J. Neurol. Neurosurg. Psychiatry, 86:385–392.
  • Nonaka, I., Sunohara, N., Ishiura, S. and Satoyoshi, E. (1981). Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation. J. Neurol. Sci. 51:141–155.
  • Nöhle, U., Beau, J. M. and Schauer, R. (1982). Uptake, metabolism and excretion of orally and intravenously administered, double-labeled N-glycoloylneuraminic acid and single-labeled 2-deoxy-2,3-dehydro-N-acetylneuraminic acid in mouse and rat. Eur. J. Biochem. 126:543–548.
  • Nöhle, U. and Schauer, R. (1981). Uptake, metabolism and excretion of orally and intravenously administered, 14C- and 3H-labeled N-acetylneuraminic acid mixture in the mouse and rat. Hoppe Seyler Z. Physiol. Chem. 362:1495–1506.
  • Nöhle, U. and Schauer, R. (1984). Metabolism of sialic acids from exogenously administered sialyllactose and mucin in mouse and rat. Hoppe Seyler Z. Physiol. Chem. 365:1457–1467.
  • O'Bleness, M., Searles, V. B., Varki, A., Gagneux, P. and Sikela, J. M. (2012). Evolution of genetic and genomic features unique to the human lineage. Nat. Rev. Genet. 13:853–866.
  • Oetke, C., Hinderlich, S., Brossmer, R., Reutter, W., Pawlita, M. and Keppler, O. T. (2001). Evidence for efficient uptake and incorporation of sialic acid by eukaryotic cells. FEBS Eur. J. Biochem. 268:4553–4561.
  • Ogasawara, Y., Namai, T., Yoshino, F., Lee, M. C. and Ishii, K. (2007). Sialic acid is an essential moiety of mucin as a hydroxyl radical scavenger. FEBS Lett. 581:2473–2477.
  • Ogura, H. (2011). Development of miracle medicines from sialic acids. Proc. Japan Acad. 87B:328–361.
  • Oriquat, G. A., Saleem, T. H., Abdullah, S. T., Soliman, G. T., Yousef, R. S., Hameed, A. M. A. and Salim, M. L. (2011). Soluble CD14, sialic acid and L-fucose in breast milk and their role in increasing the immunity of breast-fed infants. Am. J. Biochem. Biotech. 7:21–28.
  • Padler-Karavani, V., Hurtado-Ziola, N., Chang, Y. C., Sonnenburg, J. L., Ronaghy, A., YU, H., Verhagen, A., Nizet, V., Chen, X., Varki, N., Varki, A. and Angata, T. (2013). Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. FASEB J. 28:1280–1293.
  • Padler-Karavani, V. and Varki, A. (2011). Potential impact of the non-human sialic acid N-glycolylneuraminic acid on transplant rejection risk. Xenotransplant. 18:1–5.
  • Pawluczyk, I. Z. A., Ghaderi Najafabadi, M., Patel, S., Desai, P., Vashi, D., Saleem, M. A. and Topham, P. S. (2014). Sialic acid attenuates puromycin aminonucleoside-induced desialylation and oxidative stress in human podocytes. Exp. Cell Res. 320:258–268.
  • Pearce, E. I. F. and Major, G. N. (1978). The colorimetric analysis of sialic acid in human saliva and bovine salivary mucin. J. Dental Res. 57:995–1002.
  • Petherick, A. (2010). Mother's milk: a rich opportunity. Nature, 468: S5–S7.
  • Pham, T., Gregg, C. J., Karp, F., Chow, R., Padler-Karavani, V., Cao, H., Chen, X., Witztum, J. L., Varki, N. M. and Varki, A. (2009). Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium. Blood, 114:5225–5235.
  • Pike, I. L. and Milligan, L. A. (2010). Pregnancy and lactation. In: Human Evolutionary Biology, Muehlenbein, M. P., Ed., Cambridge University Press, Cambridge.
  • Puente, R., Garcia-Pardo, L. A. and Hueso, P. (1992). Gangliosides in bovine milk. Changes in content and distribution of individual ganglioside levels during lactation. Biol. Chem. Hoppe Seyler, 373:283–288.
  • Puente, R., Garcia-Pardo, L. A., Rueda, R., Gil, A. and Hueso, P. (1994). Changes in ganglioside and sialic acid contents of goat milk during lactation. J. Dairy Sci. 77:39–44.
  • Puente, R., Garcia-Pardo, L. A., Rueda, R., Gil, A. and Hueso, P. (1996). Seasonal variations in the concentration of gangliosides and sialic acids in milk from different mammalian species. Int. Dairy J. 6:315–322.
  • Puente, R. and Hueso, P. (1993). Lactational changes in the N-glycoloylneuraminic acid content of bovine milk gangliosides. Biol. Chem. Hoppe-Seyler, 374:475–478.
  • Pääbo, S. (2014). The human condition — a molecular approach. Cell, 157:216–226.
  • Qiao, Y., Feng, J., Yang, J. and Gu, G. (2013). The relationship between dietary vitamin A intake and the levels of sialic acid in the breast milk of lactating women. J. Nutr. Sci. Vitaminol. 59:347–351.
  • Reglero, A., Garcia-Alonso, J. and Cabezas, J. A. (1980). Ganglioside pattern and sialic acid content of horse, donkey, and mule brain. J. Neurochem. 34:744–746.
  • Reinke, S. O., Lehmer, G., Hinderlich, S. and Reutter, W. (2009). Regulation and pathophysiological implications of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) as the key enzyme of sialic acid biosynthesis. Biol. Chem. 390:591–599.
  • Renju, V. C., Santha, K. and Sethupathy, S. (2012). Oxidative stress, sialic acid and total antioxidant status in patients with Type 2 Diabetes mellitus. Int. J. Pharma Bio Sci. 3:789–795.
  • Rohrer, J. S. (2000). Analyzing sialic acids using high-performance anion-exchange chromatography with pulsed amperometric detection. Anal. Biochem. 283:3–9.
  • Romppanen, J. and Mononen, I. (1995). Age-related reference values for urinary excretion of sialic acid and deoxysialic acid: application to diagnosis of storage disorders of free sialic acid. Clin. Chem. 41:544–547.
  • Ruano, M.-J., Cabezas, J. A. and Hueso, P. (1999). Degradation of cytidine 5′-monophospho-N-acetylneuraminic acid under different conditions. Compar. Biochem. Physiol. 123B:301–306.
  • Sabharwal, H., Sjoblad, S. and Lundblad, A. (1991). Sialylated oligosaccharides in human milk and feces of preterm, full-term, and weaning infants. J. Pediatr. Gastroenterol. Nutr. 12:480–484.
  • Saifer, A. and Gerstenfeld, S. (1957). The serum neuraminic acid distribution. I. Methodology. J. Lab. Clin. Med. 50:17–25.
  • Samraj, A., Crittenden, A. L., Banda, K., Gregg, C. J., Assar, S., Diaz, S. L., Varki, N. and Varki, A. (2013). Diet-derived xeno-autoantigen sialic acid promotes inflammation - evidence for “Xenosialitis” FASEB J. 27.
  • Samraj, A., Läubli, H., Varki, N. and Varki, A. (2014). Involvement of a non-human sialic acid in human cancer. Front. Oncol. 4.
  • Samraj, A. N., Pearce, O. M., Laubli, H., Crittenden, A. N., Bergfeld, A. K., Banda, K., Gregg, C. J., Bingman, A. E., Secrest, P., Diaz, S. L., Varki, N. M. and Varki, A. (2015). A red meat-derived glycan promotes inflammation and cancer progression. Proc. Natl. Acad. Sci. USA, 112:542–547.
  • Sanchez-Diaz, A., Ruano, M.-J., Lorente, F. and Hueso, P. (1997). A critical analysis of total sialic acid and sialoglycoconjugate contents of bovine milk-based infant formulas. J. Pediatr. Gastroenterol. Nutr. 24:405–410.
  • Schauer, R. (1973). Chemistry and biology of the acylneuraminic acids. Angew. Chem. Int. Ed. Engl. 12:127–138.
  • Schauer, R. (1982). Chemistry, metabolism and biological functions of sialic acids. Adv. Carbohydr. Chem. Biochem. 40:131–234.
  • Schauer, R. (2001). Achievements and challenges of sialic acid research. Glycoconj. J. 17:485–499.
  • Schauer, R. (2004). Sialic acids: fascinating sugars in higher animals and man. Zoology, 107:49–64.
  • Schauer, R., Sommer, U., Kruger, D., Van, U. H. and Traving, C. (1999). The terminal enzymes of sialic acid metabolism: acylneuraminate pyruvate-lyases. Biosci. Reports, 19:373–383.
  • Schauer, R., Srinivasan, G. V., Coddeville, B., Zanetta, J. P. and Guerardel, Y. (2009). Low incidence of N-glycolylneuraminic acid in birds and reptiles and its absence in the platypus. Carbohydr. Res. 344:1494–1500.
  • Schauer, R., Veh, R. W. and Wember, M. (1976). Demonstration of neuraminidase activity in human blood serum and human milk using a modified, radioactively labelled alpha1-glycoprotein as substrate. Hoppe-Seyler. Z. Physiol. Chem. 357:559–566.
  • Schoenemann, P. T. (2006). Evolution of the size and functional areas of the human brain. Annu. Rev. Anthropol. 35.
  • Schoop, H. J., Schauer, R. and Faillard, H. (1969). Zur biosynthese der N-glykolyl-neuraminsäure. Die oxydative entstehung von N-glykolyl-neuraminsäure aus N-acetyl-neuraminsäure. Hoppe-Seyler Z. Physiol. Chem. 350:20155–20162.
  • Schroven, A., Dekany, G. and Vrasidas, I. (2013). Chemoenzymic biosynthesis of N-acetyl-D-neuraminic acid. Glycom A/S, WO 2013/088267, Priority date 15 Dec 2011.
  • Schwarzkopf, M., Knobeloch, K.-P., Rohde, E., Hinderlich, S., Wiechens, N., Lucka, L., Horak, I., Reutter, W. and Horstkorte, R. (2002). Sialylation is essential for early development in mice. Proc. Nat. Acad. Sci. USA, 99:5267–5270.
  • Scobie, L., Padler-Karavani, V., Le Bas-Bernardet, S., Crossan, C., Blaha, J., Matouskova, M., Hector, R. D., Cozzi, E., Vanhove, B., Charreau, B., Blancho, G., Bourdais, L., Tallacchini, M., Ribes, J. M., Yu, H., Chen, X., Kracikova, J., Broz, L., Hejnar, J., Vesely, P., Takeuchi, Y., Varki, A. and Soulillou, J. P. (2013). Long-term IgG response to porcine Neu5Gc antigens without transmission of PERV in burn patients treated with porcine skin xenografts. J. Immunol. 191:2907–2915.
  • Shampo, M. A. and Kyle, R. A. (2000). Richard Kuhn - Nobel Prize for work on carotenoids and vitamins. Mayo Clinic Proc. 75:990.
  • Shapiro, B. and Hofreiter, M. (2014). A paleogenomic perspective on evolution and gene function: new insights from ancient DNA. Science, 343:1236573.
  • Sim, J. E., Hong, J.-M., Suh, G. I., Cho, H., Park, K. S., Sohn, E.-H. and Choi, Y.-C. (2013). A case of GNE myopathy presenting a rapid deterioration during pregnancy. J. Clin. Neurol. 9:280–282.
  • Siskos, P. A. and Spyridaki, M.-H. E. (1999). Determination of sialic acids in biological fluids using reversed-phase ion-pair high-performance liquid chromatography. J. Chromatogr. 724B:205–212.
  • Skoza, L. and Mohos, S. (1976). Stable thiobarbituric acid chromophore with dimethyl sulphoxide. Application to sialic acid assay in analytical de-O-acetylation. Biochem. J. 159:457–462.
  • Sonnenburg, J. L., Van Halbeek, H. and Varki, A. (2002). Characterization of the acid stability of glycosidically linked neuraminic acid: use in detecting de-N-acetyl-gangliosides in human melanoma. J. Biol. Chem. 277:17502–17510.
  • Spichtig, V., Michaud, J. and Austin, S. (2010). Determination of sialic acids in milks and milk-based products. Anal. Biochem. 405:28–40.
  • Springer, S. A., Diaz, S. L. and Gagneux, P. (2014). Parallel evolution of a self-signal: humans and new world monkeys independently lost the cell surface sugar Neu5Gc. Immunogenetics, 66:671–674.
  • Stallforth, P., Matthies, S., Adibekian, A., Gillingham, D. G., Hilvert, D. and Seeberger, P. H. (2012). De novo chemoenzymatic synthesis of sialic acid. Chem. Commun. 48:11987–11989.
  • Strecker, G., Wieruszeski, J. M., Cuvillier, O., Michalski, J.-C. and Montreuil, J. (1992). 1H and 13C-NMR assignments for sialylated oligosaccharide-alditols related to mucins. Study of thirteen components from hen ovomucin and swallow nest mucin. Biochimie, 74:39–51.
  • Svennerholm, L. (1957). Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim. Biophys. Acta, 24:604–611.
  • Svennerholm, L. (1964). The Gangliosides. J. Lipid Res. 5:145–155.
  • Svennerholm, L., Bostrom, K., Jungbjer, B. and Olsson, L. (1994). Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J. Neurochem. 63:1802–1811.
  • Sørensen, L. K. (2010). Determination of sialic acids in infant formula by liquid chromatography tandem mass spectrometry. Biomed. Chromatogr. 24:1208–1212.
  • Takasaki, S. and Kobata, A. (1974). Microdetermination of individual neutral and amino sugars and N-acetylneuraminic acid in complex saccharides. J. Biochem. 76:783–789.
  • Talafova, K. and Nahalka, J. (2012). “Lost sugars” - reality of their biological and medical applications. Cent. Eur. J. Biol. 7:777–793.
  • Tanaka, K., Tokumaru, S. and Kojo, S. (1997). Possible involvement of radical reactions in desialylation of LDL. FEBS Lett. 413:202–204.
  • Tangvoranuntakul, P., Gagneux, P., Diaz, S., Bardor, M., Varki, N., Varki, A. and Muchmore, E. (2003). Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc. Natl. Acad. Sci. USA, 100:12045–12050.
  • Tanner, M. E. (2005). The enzymes of sialic acid biosynthesis. Bioorg. Chem. 33:216–228.
  • Taylor, R. E., Gregg, C. J., Padler-Karavani, V., Ghaderi, D., Yu, H., Huang, S., Sorensen, R. U., Chen, X., Inostroza, J., Nizet, V. and Varki, A. (2010). Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J. Exp. Med. 207:1637–1646.
  • Tebani, A., Schlemmer, D., Imbard, A., Rigal, O., Porquet, D. and Benoist, J. F. (2011). Measurement of free and total sialic acid by isotopic dilution liquid chromatography tandem mass spectrometry method. J. Chromatogr. 879B:3694–3699.
  • Thurl, S., Henker, J., Siegel, M., Tovar, K. and Sawatzki, G. (1997). Detection of four human milk groups with respect to Lewis blood group dependent oligosaccharides. Glycoconj. J. 14:795–799.
  • Thurl, S., Mueller-Werner, B. and Sawatzki, G. (1996). Quantification of individual oligosaccharide compounds from human milk using high-pH anion-exchange chromatography. Anal. Biochem. 235:202–206.
  • Topham, P., Barratt, J. and Feehally, J. (2008). A spoonful of sugar helps the proteinuria go down? Nephrol. Dial. Transplant. 23:813–815.
  • Tram, T. H., Brand Miller, J. C., Mcneil, Y. and Mcveagh, P. (1997). Sialic acid content of infant saliva: comparison of breast fed with formula fed infants. Arch. Dis. Child, 77:315–318.
  • Traving, C. and Schauer, R. (1998). Structure, function and metabolism of sialic acids. Cell Mol. Life Sci. 54:1330–1349.
  • Trivers, R. L. (1974). Parent-offspring conflict. Am. Zool. 14:249–264.
  • Ueno, K., Ando, S. and Yu, R. K. (1978). Gangliosides of human, cat, and rabbit spinal cords and cord myelin. J. Lipid Res. 19:863–871.
  • Ultragenyx (2014). Ultragenyx announces positive data From phase 2 study of sialic acid extended-release at Emerging Sciences Session of American Academy of Neurology Annual Meeting. Globe Newswire Online, Available at: https://globenewswire.com/news-release/2014/04/30/632157/10079261/en/Ultragenyx-Announces-Positive-Data-From-Phase-2-Study-of-Sialic-Acid-Extended-Release-at-Emerging-Sciences-Session-of-American-Academy-of-Neurology-Annual-Meeting.html (accessed April 30).
  • Van Der Ham, M., De Koning, T. J., Lefeber, D. J., Fleer, A., Prinsen, B. H. C. M. T. and De Sain-Van der Velden, M. G. M. (2010). Liquid chromatography–tandem mass spectrometry assay for the quantification of free and total sialic acid in human cerebrospinal fluid. J. Chromatogr. 878B.
  • Varki, A. 2001a. Loss of N-glycolylneuraminic acid in humans: mechanisms, consequences, and implications for hominid evolution. Am. J. Phys. Anthropol. (Suppl 33):54–69.
  • Varki, A. 2001d. N-glycolylneuraminic acid deficiency in humans. Biochimie 83:615–622.
  • Varki, A. (2008). Sialic acids in human health and disease. Trends Mol. Med. 14:351–360.
  • Varki, A. (2010). Uniquely human evolution of sialic acid genetics and biology. Proc. Nat. Acad. Sci. USA 107:8939–8946.
  • Varki, A. and Gagneux, P. (2012). Multifarious roles of sialic acids in immunity. Annals New York Acad. Sci. 1253:16–36.
  • Varki, A. and Schauer, R. (2009). Sialic Acids. In: Essentials of Glycobiology, Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W. and Etzler, M. E., Eds., Cold Spring Harbor Laboratory Press, New York.
  • Varki, N. M., Strobert, E., Dick jr, E. J., Benirschke, K. and Varki, A. (2011). Biomedical differences between human and nonhuman hominids: potential roles for uniquely human aspects of sialic acid biology. Annu. Rev. Pathol. 6:365–393.
  • Varki, N. M. and Varki, A. (2007). Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab. Invest. 87:851–857.
  • Vrasidas, I., Dekany, G., Janosi, A., Hederos, M. and Röhrig, C. H. (2012). N-substituted mannosamine derivatives, process for their preparation and their use. Glycom A/S, WO 2013/088267, Priority date 15 Dec 2011.
  • Wadman, M. (2006). London's disastrous drug trial has serious side effects for research. Nature 440:388–389.
  • Waldman, J. P., Brock, L. G. and Rees, M. A. (2014). A human-specific mutation limits nonhuman primate efficacy in preclinical xenotransplantation studies. Transplantation 97:385–390.
  • Walz, E. (1927). Über das vorkommen von kerasin in der normalen rindermilz. Hoppe-Seyler Z. Physiol. Chem. 166:20210–20222.
  • Wang, B. (2009). Sialic acid is an essential nutrient for brain development and cognition. Annu. Rev. Nutr. 29:177–222.
  • Wang, B. (2012). Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv. Nutr. 3:465S–4672S.
  • Wang, B. and Brand-Miller, J. (2003). The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutr. 57:1351–1369.
  • Wang, B., Brand-Miller, J., McVeagh, P. and Petocz, P. 2001a. Concentration and distribution of sialic acid in human milk and infant formulas. Am. J. Clin. Nutr. 74:510–515.
  • Wang, B., Downing, J. A., Petocz, P., Brand-Miller, J. C. and Bryden, W. L. (2007). Metabolic fate of intravenously administered N-acetylneuraminic acid-6-14C in newborn piglets. Asia Pac. J. Clin. Nutr. 16:110–115.
  • Wang, B., McVeagh, P., Petocz, P. and Brand-Miller, J. 2003a. Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Am. J. Clin. Nutr. 78:1024–1029.
  • Wang, B., Miller, J. B., Mcneil, Y. and Mcveagh, P. (1998). Sialic acid concentration of brain gangliosides: variation among eight mammalian species. Compar. Biochem. Physiol. 119A:435–439.
  • Wang, B., Miller, J. B., Sun, Y., Ahmad, Z., Mcveagh, P. and Petocz, P. 2001u. A longitudinal study of salivary sialic acid in preterm infants: Comparison of human milk-fed versus formula-fed infants. J. Pediatr. 138:914–916.
  • Wang, B., Petocz, P. and Brand-Miller, J. 2003d. Relationship of sialic acid and fatty acid composition of brain gangliosides: breast-fed vs formula-fed infant. Asia Pac. J. Clin. Nutr. (Suppl 12):S43.
  • Wang, D., Zhou, X., Wang, L., Wang, S. and Sun, X.-L. (2014). Quantification of free sialic acid in human plasma through a robust quinoxalinone derivatization and LC-MS/MS using isotope-labeled standard calibration. J. Chromatogr. 944B:75–81.
  • Wang, X., Mitra, N., Cruz, P., Deng, L., Varki, N., Angata, T., Green, E. D., Mullikin, J., Hayakawa, T. and Varki, A. 2012a. Evolution of Siglec-11 and Siglec-16 genes in hominins. Mol. Biol. Evol. 29:2073–2086.
  • Wang, X., Mitra, N., Secundino, I., Banda, K., Cruz, P., Padler-Karavani, V., Verhagen, A., Reid, C., Lari, M., Rizzi, E., Balsamo, C., Corti, G., De Bellis, G., Longo, L., Program, N. C. S., Beggs, W., Caramelli, D., Tishkoff, S. A., Hayakawa, T., Green, E. D., Mullikin, J. C., Nizet, V., Bui, J. and Varki, A. 2012c. Specific inactivation of two immunomodulatory SIGLEC genes during human evolution. Proc. Nat. Acad. Sci. USA, 109:9935–9940.
  • Warren, L. (1959). The thiobarbituric acid assay of sialic acids. J. Biol.Chem. 234:1971–1975.
  • Weidemann, W., Hering, J., Bennmann, D., Thate, A. and Horstkorte, R. (2013). The key enzyme of the sialic acid metabolism is involved in embryoid body formation and expression of marker genes of germ layer formation. Int. J. Mol. Sci. 14:20555–20563, 9 pp.
  • Werner, I. and Odin, L. (1952). On the presence of sialic acid in certain glycoproteins and in gangliosides. Acta Soc. Med. Ups. 57:230–241.
  • Wiederschain, G. Y. and Newburg, D. S. (2001). Glycoconjugate stability in human milk: glycosidase activities and sugar release. J. Nutr. Biochem. 12:559–564.
  • Wieruszeski, J.-M., Michalski, J.-C., Montreuil, J., Strecker, G., Peter-Katalinic, J., Egge, H., Van Halbeek, H., Mutsaers, J. H. G. M. and Vliegenthart, J. F. G. (1987). Structure of the monosialyl oligosaccharides derived from salivary gland mucin glycoproteins of the Chinese swiftlet (genus Collocalia). J. Biol. Chem. 262:6650–6657.
  • Witt, W., Von, N. H. and Zilliken, F. (1979). Uptake and distribution of orally applied N-acetyl-(14C)neuraminosyl-lactose and N-acetyl-(14C)neuraminic acid in the organs of newborn rats. Nutr. Metab. 23:51–61.
  • Wood, B. (2014). Comment. Human evolution: fifty years after Homo habilis. Nature, 508:31–33.
  • Wood, B. and Collard, M. (1999). The human genus. Science, 284:65–71.
  • Wu, Y., Chen, Y., Wang, B., Bai, L., Han, W. R., Ge, Y. and Yuan, F. (2010). Application of SYBRgreen PCR and 2DGE methods to authenticate edible bird's nest food. Food Res. Int. 43:2020–2026.
  • Yamakawa, T. and Suzuki, S. (1951). The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. I. Concerning the ether-insoluble lipids of lyophylized horse blood stroma. J. Biochem. 38:199–212.
  • Yang, C.-C., Yao, C.-A., Yang, J.-C. and Chien, C.-T. 2014a. Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling. Toxicol. Sci. 141:155–165.
  • Yang, M., Cheung, S.-H., Li, S. C. and Cheung, H.-Y. 2014b. Establishment of a holistic and scientific protocol for the authentication and quality assurance of edible bird's nest. Food Chem. 151:271–278.
  • Yarovaya, N., Schot, R., Fodero, L., Mcmahon, M., Mahoney, A., Williams, R., Verbeek, E., De Bondt, A., Hampson, M., Van der Spek, P., Stubbs, A., Masters, C. L., Verheijen, F. W., Mancini, G. M. S. and Venter, D. J. (2005). Sialin, an anion transporter defective in sialic acid storage diseases, shows highly variable expression in adult mouse brain, and is developmentally regulated. Neurobiol. Dis. 19:351–365.
  • Yasuda, J., Eguchi, H., Fujiwara, N., Ookawara, T., Kojima, S., Yamaguchi, Y., Nishimura, M., Fujimoto, J. and Suzuki, K. (2006). Reactive oxygen species modify oligosaccharides of glycoproteins in vivo: a study of a spontaneous acute hepatitis model rat (LEC rat). Biochem. Biophys. Res. Commun. 342:127–134.
  • Yin, J., Hashimoto, A., Izawa, M., Miyazaki, K., Chen, G. Y., Takematsu, H., Kozutsumi, Y., Suzuki, A., Furuhata, K., Cheng, F. L., Lin, C. H., Sato, C., Kitajima, K. and Kannagi, R. (2006). Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non-human sialic acid on human cancer cells. Cancer Res. 66:2937–2945.
  • Yonekawa, T., Malicdan, M. C., Cho, A., Hayashi, Y. K., Nonaka, I., Mine, T., Yamamoto, T., Nishino, I. and Noguchi, S. (2014). Sialyllactose ameliorates myopathic phenotypes in symptomatic GNE myopathy model mice. Brain, 137:2670–2679.
  • Yu, R. K. and Ledeen, R. W. (1970). Gas-liquid chromatographic assay of lipid-bound sialic acids: measurement of gangliosides in brain of several species. J. Lipid Res. 11:506–516.
  • Zeng, C. and Wang, B. (2007). Sialic acid concentration in conventional foods of Australia. Asia Pac. J. Clin. Nutr. 16: S114.
  • Zhang, Y., Tao, F., Du, M., Ma, C., Qiu, J., Gu, L., He, X. and Xu, P. (2010). An efficient method for N-acetyl-D-neuraminic acid production using coupled bacterial cells with a safe temperature-induced system. Appl. Microbiol. Biotechnol. 86:481–489.
  • Zhu, A. and Hurst, R. (2002). Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum. Xenotransplant. 9:376–381.
  • Zilliken, F., Braun, G. A. and György, P. (1955). Gynaminic acid, a naturally occurring form of neuraminic acid in human milk. Arch. Biochem. Biophys. 564–566.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.