3,888
Views
154
CrossRef citations to date
0
Altmetric
Dietary Phytochemicals: Nutrition and Health (ISPMF2015)

A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables

, , , , &

REFERENCES

  • Alvarez-Suarez, J. M., Giampieri, F., Tulipani, S., Casoli, T., Di Stefano, G., Gonzalez-Paramas, A. M., Santos-Buelga, C., Busco, F., Quiles, J. L., Cordero, M. D., Bompadre, S., Mezzetti, B. and Battino, M. (2014). One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J. Nutr. Biochem. 25:289–294.
  • Annegowda, H. V., Bhat, R., Yeong, K. J., Liong, M. T., Karim, A. A. and Mansor, S. M. (2014). Influence of drying treatments on polyphenolic contents and antioxidant properties of raw and ripe papaya (Carica papaya L.). Int. J. Food Prop. 17:283–292.
  • Apak, R., Guclu, K., Demirata, B., Ozyurek, M., Celik, S. E., Bektasoglu, B., Berker, K. I. and Ozyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules. 12:1496–1547.
  • Araya-Farias, M., Makhlouf, J. and Ratti, C. (2011). Drying of seabuckthorn (Hippophae rhamnoides L.) berry: Impact of dehydration methods on kinetics and quality. Drying Technol. 29:351–359.
  • Arikan, M. F., Ayhan, Z., Soysal, Y. and Esturk, O. (2012). Drying characteristics and quality parameters of microwave-dried grated carrots. Food Bioprocess Tech. 5:3217–3229.
  • Babbar, N., Oberoi, H. S. and Sandhu, S. K. (2015). Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues. Crit. Rev. Food Sci. Nutr. 55:319–337.
  • Balasundram, N., Sundram, K. and Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 99:191–203.
  • Calin-Sanchez, A., Figiel, A., Hernandez, F., Melgarejo, P., Lech, K. and Carbonell-Barrachina, A. A. (2013). Chemical composition, antioxidant capacity, and sensory quality of pomegranate (Punica granatum L.) arils and rind as affected by drying method. Food Bioprocess Tech. 6:1644–1654.
  • Capanoglu, E. (2014). Investigating the antioxidant potential of Turkish dried fruits. Int. J. Food Prop. 17:690–702.
  • Capanoglu, E., Beekwilder, J., Boyacioglu, D., De Vos, R. C. and Hall, R. D. (2010). The effect of industrial food processing on potentially health-beneficial tomato antioxidants. Crit. Rev. Food Sci. Nutr. 50:919–930.
  • Chiva-Blanch, G. and Visioli, F. (2012). Polyphenols and health: Moving beyond antioxidants. J. Berry Res. 2:63–71.
  • Chong, C. H., Law, C. L., Figiel, A., Wojdylo, A. and Oziemblowski, M. (2013). Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chem. 141:3889–3896.
  • Chottamom, P., Kongmanee, R., Manklang, C. and Soponronnarit, S. (2012). Effect of osmotic treatment on drying kinetics and antioxidant properties of dried mulberry. Drying Technol. 30:80–87.
  • Desobry, S. A., Netto, F. M. and Labuza, T. P. (1997). Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. J. Food Sci. 62:1158–1162.
  • Effie, V. and Antonia, T. (2014). Greek raisins: A traditional nutritious delicacy. J. Berry Res. 4:117–125.
  • Fratianni, A., Albanese, D., Mignogna, R., Cinquanta, L., Panfili, G. and Di Matteo, M. (2013). Degradation of carotenoids in apricot (Prunus armeniaca L.) during drying process. Plant Foods Hum. Nutr. 68:241–246.
  • Gao, Q. H., Wu, C. S., Wang, M., Xu, B. N. and Du, L. J. (2012). Effect of drying of jujubes (Ziziphus jujuba Mill.) on the contents of sugars, organic acids, α-tocopherol, β-carotene, and phenolic compounds. J. Agric. Food Chem. 60:9642–9648.
  • Garcia-Martinez, E., Igual, M., Martín-Esparza, M. E. and Martinez-Navarrete, N. (2013). Assessment of the bioactive compounds, color, and mechanical properties of apricots as affected by drying treatment. Food Bioprocess Tech. 6:3247–3255.
  • George, S., Tourniaire, F., Gautier, H., Goupy, P., Rock, E. and Caris-Veyrat, C. (2011). Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chem. 124:1603–1611.
  • Giampieri, F., Alvarez-Suarez, J. M. and Battino, M. (2014). Strawberry and human health: Effects beyond antioxidant activity. J. Agric. Food Chem. 62:3867–3876.
  • Guclu, K., Altun, M., Ozyurek, M., Karademir, S. E. and Apak, R. (2006). Antioxidant capacity of fresh, sun- and sulphited- dried Malatya apricot (Prunus armeniaca) assayed by CUPRAC, ABTS/TEAC and folin methods. Int. J. Food Sci. Technol. 41:76–85.
  • Gumusay, O. A., Borazan, A. A., Ercal, N. and Demirkol, O. (2015). Drying effects on the antioxidant properties of tomatoes and ginger. Food Chem. 173:156–162.
  • Hiranvarachat, B., Suvarnakuta, P. and Devahastin, S. (2008). Isomerisation kinetics and antioxidant activities of β-carotene in carrots undergoing different drying techniques and conditions. Food Chem. 107:1538–1546.
  • Ignat, I., Volf, I. and Popa, V. I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 126:1821–1835.
  • Ihns, R., Diamante, L. M., Savage, G. P. and Vanhanen, L. (2011). Effect of temperature on the drying characteristics, colour, antioxidant and beta-carotene contents of two apricot varieties. Int. J. Food Sci Technol. 46:275–283.
  • Jorge, A., Almeida, D. M., Canteri, M. H. G., Sequinel, T., Kubaski, E. T. and Tebcherani, S. M. (2014). Evaluation of the chemical composition and colour in long-life tomatoes (Lycopersicon esculentum Mill) dehydrated by combined drying methods. Int. J. Food Sci Technol. 49:2001–2007.
  • Joshi, A. P. K., Rupasinghe, H. P. V. and Khanizadeh, S. (2011). Impact of drying processes on bioactive phenolics, vitamin C and antioxidant capacity of red-fleshed apple slices. J. Food Process. Preserv. 35:453–457.
  • Kalt, W. (2005). Effects of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci. 70:R11–R19.
  • Kamiloglu, S. and Capanoglu, E. (2014). Polyphenol content in figs (Ficus carica L.): Effect of sun-drying. Int. J. Food Prop. 18(3):521–535.
  • Kamiloglu, S., Demirci, M., Selen, S., Toydemir, G., Boyacioglu, D. and Capanoglu, E. (2014a). Home processing of tomatoes (Solanum lycopersicum): Effects on in vitro bioaccessibility of total lycopene, phenolics, flavonoids, and antioxidant capacity. J. Sci. Food Agric. 94:2225–2233.
  • Kamiloglu, S., Pasli, A. A., Ozcelik, B. and Capanoglu, E. (2014b). Evaluating the in vitro bioaccessibility of phenolics and antioxidant activity during consumption of dried fruits with nuts. LWT-Food Sci. Technol. 56:284–289.
  • Kaur, C. and Kapoor, H. C. (2001). Antioxidants in fruits and vegetables-the millennium's health. Int. J. Food Sci Technol. 36:703–725.
  • Kemp, M., Dever, J., Thompson, A., Metzger, B. and Barnes, D. (2013). Evaluation of pumpkins as a novel source for α-carotene. FASEB J. 27:1079.60.
  • Korus, A. (2011). Effect of preliminary processing, method of drying and storage temperature on the level of antioxidants in kale (Brassica oleracea L. var. acephala) leaves. LWT-Food Sci. Technol. 44:1711–1716.
  • Leong, S. Y. and Oey, I. (2012). Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chem. 133:1577–1587.
  • Liu, Y., Wu, J., Miao, S., Chong, C. and Sun, Y. (2014). Effect of a modified atmosphere on drying and quality characteristics of carrots. Food Bioprocess Tech. 7:2549–2559.
  • Liu, P., Zhang, M. and Mujumdar, A. S. (2012). Comparison of three microwave-assisted drying methods on the physiochemical, nutritional and sensory qualities of re-structured purple-fleshed sweet potato granules. Int. J. Food Sci Technol. 47:141–147.
  • Loizzo, M. R., Pugliese, A., Bonesi, M., De Luca, D., O'Brien, N., Menichini, F. and Tundis, R. (2013). Influence of drying and cooking process on the phytochemical content, antioxidant and hypoglycaemic properties of two bell Capsicum annum L. cultivars. Food Chem. Toxicol. 53:392–401.
  • Ma, G., Zhang, L., Kato, M., Yamawaki, K., Kiriiwa, Y., Yahata, M., Ikoma, Y. and Matsumoto, H. (2011). Effect of blue and red LED light irradiation on β-cryptoxanthin accumulation in the flavedo of citrus fruits. J. Agric. Food Chem. 60:197–201.
  • Mamatha, B. S., Arunkumar, R. and Baskaran, V. (2012). Effect of processing on major carotenoid levels in corn (Zea mays) and selected vegetables: Bioavailability of lutein and zeaxanthin from processed corn in mice. Food Bioprocess Tech. 5:1355–1363.
  • Marquez, A., Duenas, M., Serratosa, M. P. and Merida, J. (2012). Formation of vitisins and anthocyanin–flavanol adducts during red grape drying. J. Agric. Food Chem. 60:6866–6874.
  • Mejia-Meza, E. I., Yanez, J. A., Remsberg, C. M., Takemoto, J. K., Davies, N. M., Rasco, B. and Clary, C. (2010). Effect of dehydration on raspberries: Polyphenol and anthocyanin retention, antioxidant capacity, and antiadipogenic activity. J. Food Sci. 75:H5–H12.
  • Miletic, N., Mitrovic, O., Popovic, B., Nedovic, V., Zlatkovic, B. and Kandic, M. (2013). Polyphenolic content and antioxidant capacity in fruits of plum (Prunus domestica L.) cultivars “Valjevka” and “Mildora” as influenced by air drying. J. Food Qual. 36:229–237.
  • Muratore, G., Rizzo, V., Licciardello, F. and Maccarone, E. (2008). Partial dehydration of cherry tomato at different temperature, and nutritional quality of the products. Food Chem. 111:887–891.
  • Nicoli, M. C., Anese, M. and Parpinel, M. (1999). Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci. Technol. 10:94–100.
  • Niki, E. (2011). Antioxidant capacity: Which capacity and how to assess it?. J. Berry Res. 1:169–176.
  • Nindo, C., Sun, T., Wang, S. W., Tang, J. and Powers, J. R. (2003). Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus (Asparagus officinalis L.). LWT-Food Sci. Technol. 36:507–516.
  • Nora, C. D., Muller, C. D. R., de Bona, G. S., Rios, A. D. O., Hertz, P. F., de Jong Jablonski, A. and Flores, S. H. (2014). Effect of processing on the stability of bioactive compounds from red guava (Psidium cattleyanum Sabine) and guabiju (Myrcianthes pungens). J. Food Composit. Anal. 34:18–25.
  • Perez-Gregorio, M. R., Regueiro, J., Gonzalez-Barreiro, C., Rial-Otero, R. and Simal-Gandara, J. (2011). Changes in antioxidant flavonoids during freeze-drying of red onions and subsequent storage. Food Control. 22:1108–1113.
  • Prior, R. L., Wu, X. and Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53:4290–4302.
  • Ratti, C. (2001). Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 49:311–319.
  • Regier, M., Mayer-Miebach, E., Behsnilian, D., Neff, E. and Schuchmann, H. P. (2005). Influences of drying and storage of lycopene-rich carrots on the carotenoid content. Drying Technol. 23:989–998.
  • Rodriguez, K., Ah-Hen, K., Vega-Galvez, A., Lopez, J., Quispe-Fuentes, I., Lemus-Mondaca,   and Galvez-Ranilla, L. (2014). Changes in bioactive compounds and antioxidant activity during convective drying of murta (Ugni molinae T.) berries. Int. J. Food Sci Technol. 49:990–1000.
  • Sablani, S. S., Andrews, P. K., Davies, N. M., Walters, T., Saez, H. and Bastarrachea, L. (2011). Effects of air and freeze drying on phytochemical content of conventional and organic berries. Drying Technol. 29:205–216.
  • Sagar, V. R. and Kumar, P. S. (2010). Recent advances in drying and dehydration of fruits and vegetables: A review. J. Food Sci. Technol. 47:15–26.
  • Santos, P. H. S. and Silva, M. A. (2008). Retention of vitamin C in drying processes of fruits and vegetables-A review. Drying Technol. 26:1421–1437.
  • Shofian, N. M., Hamid, A. A., Osman, A., Saari, N., Anwar, F., Pak Dek, M. S. and Hairuddin, M. R. (2011). Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits. Int. J. Mol. Sci. 12:4678–4692.
  • Slatnar, A., Klancar, U., Stampar, F. and Veberic, R. (2011). Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds. J. Agric. Food Chem. 59:11696–11702.
  • Stanner, S. A., Hughes, J., Kelly, C. N. M. and Buttriss, J. (2004). A review of the epidemiological evidence for the ‘antioxidant hypothesis'. Public Health Nutr. 7:407–422.
  • Toor, R. K. and Savage, G. P. (2006). Effect of semi-drying on the antioxidant components of tomatoes. Food Chem. 94:90–97.
  • Topuz, A., Dincer, C., Ozdemir, K. S., Feng, H. and Kushad, M. (2011). Influence of different drying methods on carotenoids and capsaicinoids of paprika (Cv., Jalapeno). Food Chem. 129:860–865.
  • Turkyilmaz, M., Ozkan, M. and Guzel, N. (2014). Loss of sulfur dioxide and changes in some chemical properties of Malatya apricots (Prunus armeniaca L.) during sulfuring and drying. J. Sci. Food Agric. 94:2488–2496.
  • Udomkun, P., Nagle, M., Mahayothee, B., Nohr, D., Koza, A. and Muller, J. (2015). Influence of air drying properties on non-enzymatic browning, major bio-active compounds and antioxidant capacity of osmotically pretreated papaya. LWT-Food Sci. Technol. 60:914–922.
  • Vimala, B., Nambisan, B. and Hariprakash, B. (2011). Retention of carotenoids in orange-fleshed sweet potato during processing. J. Food Sci. Technol. 48:520–524.
  • Wojdylo, A., Figiel, A., Lech, K., Nowicka, P. and Oszmianski, J. (2014). Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food Bioprocess Tech. 7:829–841.
  • Wootton-Beard, P. C., Moran, A. and Ryan, L. (2011). Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods. Food Research Int. 44:217–224.
  • Yan, W. Q., Zhang, M., Huang, L. L., Tang, J., Mujumdar, A. S. and Sun, J. C. (2010). Studies on different combined microwave drying of carrot pieces. Int. J. Food Sci Technol. 45:2141–2148.
  • Yang, J., Chen, J. F., Zhao, Y. Y. and Mao, L. C. (2010). Effects of drying processes on the antioxidant properties in sweet potatoes. Agric. Sci. China. 9:1522–1529.
  • Yemis, O., Bakkalbasi, E. and Artik, N. (2012). Changes in pigment profile and surface colour of fig (Ficus carica L.) during drying. Int. J. Food Sci Technol. 47:1710–1719.
  • Zhang, M., Tang, J., Mujumdar, A. S. and Wang, S. (2006). Trends in microwave-related drying of fruits and vegetables. Trends Food Sci. Technol. 17:524–534.
  • Zhao, D., An, K., Ding, S., Liu, L., Xu, Z. and Wang, Z. (2014). Two-stage intermittent microwave coupled with hot-air drying of carrot slices: Drying kinetics and physical quality. Food Bioprocess Tech. 7:2308–2318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.