2,063
Views
89
CrossRef citations to date
0
Altmetric
Original Articles

High γ-aminobutyric acid production from lactic acid bacteria: Emphasis on Lactobacillus brevis as a functional dairy starter

&

References

  • Adebayo, C. O. and Aderiye, B. I. (2011). Suspected mode of antimycotic action of brevicin SG1 against candida albicans and penicilliumcitrinum. Food Control. 22:1814–1820.
  • Aoki, H., Furuya, Y., Endo, Y. and Fujimoto, K. (2003). Effect of gamma-aminobutyric acid-enriched tempeh-like fermented soybean (GABA-tempeh) on the blood pressure of spontaneously hypertensive rats. Biosci.Biotech.Bioch. 67:1806–1808.
  • Barrett, E. (2014). This article corrects: gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl.Microbiol. 116:1384–1386.
  • Benoit, V., Lebrihi, A., Milliere, J. B. and Lefebvre, G. (1997). Purification and partial amino acid sequence of brevicin 27, a bacteriocin produced by Lactobacillus brevis SB27. Curr.Microbiol. 34:173–179.
  • Binh, T. T. T., Ju, W. T., Jung, W. J. and Park, R. D. (2014). Optimization of gamma-amino butyric acid production in a newly isolated Lactobacillus brevis. Biotechnol.Lett. 36:93–98.
  • Bouche, N. and Fromm, H. (2004). GABA in plants: just a metabolite? Trends Plant Sci. 9:110–115.
  • Buckenhuskes, H. J. (1993). Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FEMS Microbiol. Rev. 12:253–272.
  • Campus, G., Cocco, F., Carta, G., Cagetti, M. G., Simark-Mattson, C., Strohmenger, L. and Lingstrom, P. (2014). Effect of a daily dose of Lactobacillus brevis CD2 lozenges in high caries risk schoolchildren. Clin Oral Invest. 18:555–561.
  • Chen, M., Sun, Q., Giovannucci, E., Mozaffarian, D., Manson, J. E., Willett, W. C. and Hu, F. B. (2014). Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Med. 12.
  • Cherng, S. H., Huang, C. Y., Kuo, W. W., Lai, S. E., Tseng, C. Y., Lin, Y. M., Tsai, F. J. and Wang, H. F. (2014). GABA tea prevents cardiac fibrosis by attenuating TNF-alpha and Fas/FasL-mediated apoptosis in streptozotocin-induced diabetic rats. Food ChemToxicol. 65:90–96.
  • Cho, Y. R., Chang, J. Y. and Chang, H. C. (2007). Production of gamma-aminobutyric acid (GABA) by lactobacillus buchneri isolated from Kimchi and its neuroprotective effect on neuronal cells. J.Microbiol.Biotechn. 17:104–109.
  • Choi, S. I., Lee, J. W., Park, S. M., Lee, M. Y., Ji, G. E., Park, M. S. and Heo, T. R. (2006). Improvement of gamma-aminobutyric acid (GABA) production using cell entrapment of Lactobacillus brevis GABA 057. J.Microbiol.Biotechn. 16:562–568.
  • Chuang, C. Y., Shi, Y. C., You, H. P., Lo, Y. H. and Pan, T. M. (2011). Antidepressant effect of GABA-rich monascus-fermented product on forced swimming rat model. J.Agr. Food Chem. 59:3027–3034.
  • Coventry, M. J., Wan, J., Gordon, J. B., Mawson, R. F. and Hickey, M. W. (1996). Production of brevicin 286 by Lactobacillus brevis VB286 and partial characterization. J. Appl.Bacteriol. 80:91–98.
  • Davoodi, H., Esmaeili, S. and Mortazavian, A. M. (2013). Effects of milk and milk products consumption on cancer: A review. Compr. Rev.Food Sci. F. 12:249–264.
  • De Biase, D. and Pennacchietti, E. (2012). Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Mol.Microbiol. 86:770–786.
  • Diana, M., Tres, A., Quilez, J., Llombart, M. and Rafecas, M. (2014). Spanish cheese screening and selection of lactic acid bacteria with high gamma-aminobutyric acid production. LWT-Food Sci. Technol. 56:351–355.
  • Fan, E., Huang, J., Hu, S., Mei, L. and Yu, K. (2012). Cloning, sequencing and expression of a glutamate decarboxylase gene from the GABA-producing strain Lactobacillus brevis CGMCC 1306. Ann.Microbiol. 62:689–698.
  • Feehily, C. and Karatzas, K. A. G. (2013). Role of glutamate metabolism in bacterial responses towards acid and other stresses. J. Appl.Microbiol. 114:11–24.
  • Foster, A. C. and Kemp, J. A. (2006). Glutamate- and GABA-based CNS therapeutics. Curr.OpinPharmacol. 6:7–17.
  • Huang, J., Mei, L. H., Sheng, Q., Yao, S. J. and Lin, D. Q. (2007). Purification and characterization of glutamate decarboxylase of Lactobacillus brevis CGMCC 1306 isolated from fresh milk. Chinese J. Chem. Eng. 15:157–161.
  • Hutkins, R. W. and Nannen, N. L. (1993). pH homeostasis in lactic acid bacteria. J. Dairy Sci. 76:2354–2365.
  • Inoue, K., Shirai, T., Ochiai, H., Kasao, M., Hayakawa, K., Kimura, M. and Sansawa, H. (2003). Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur. J.Clin.Nutr. 57:490–495.
  • Kagan, I. A., Coe, B. L., Smith, L. L., Huo, C. J., Dougherty, C. T. and Strickland, J. R. (2008). A validated method for gas chromatographic analysis of gamma-aminobutyric acid in tall fescue herbage. J. Agr. Food Chem. 56:5538–5543.
  • Kandler, O. (1983). Carbohydrate metabolism in lactic acid bacteria. A Van Leeuw J. Microb. 49:209–224.
  • Kashima, S., Fujiya, M., Konishi, H., Ueno, N., Inaba, Y., Moriichi, K., Tanabe, H., Ikuta, K., Ohtake, T. and Kohgo, Y. (2015). Polyphosphate, an active molecule derived from probiotic Lactobacillus brevis, improves the fibrosis in murine colitis. Transl. Res. 166:163–175.
  • Kim, H. Y., Yokozawa, T., Nakagawa, T. K. and Sasaki, S. (2004). Protective effect of gamma-aminobutyric acid against glycerol-induced acute renal failure in rats. Food Chem.Toxicol. 42:2009–2014.
  • Kim, J. Y., Lee, M. Y., Ji, G. E., Lee, Y. S. and Hwang, K. T. (2009). Production of gamma-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int. J. Food Microbiol. 130:12–16.
  • Kim, K. A., Jeong, J. J. and Kim, D. H. (2015). Lactobacillus brevis OK56 ameliorates high-fat diet-induced obesity in mice by inhibiting NF-κB activation and gut microbial LPS production. J. Functl Foods. 13:183—191.
  • Kim, S. H., Shin, B. H., Kim, Y. H., Nam, S. W. and Jeon, S. J. (2007). Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus brevis BH2. Biotechnol. Bioproc. E. 12:707–712.
  • Ko, C. Y., Lin, H. T. V. and Tsai, G. J. (2013). Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochem. 48:559–568.
  • Komatsuzaki, N., Nakamura, T., Kimura, T. and Shima, J. (2008). Characterization of glutamate decarboxylase from a high gamma-aminobutyric acid (GABA)-producer, lactobacillus paracasei. Biosci. Biotech. Bioch. 72:278–285.
  • Komatsuzaki, N., Shima, J., Kawamoto, S., Momose, H. and Kimura, T. (2005). Production of gamma-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 22:497–504.
  • Kook, M. C., Seo, M. J., Cheigh, C. I., Pyun, Y. R., Cho, S. C. and Park, H. (2010). Enhanced production of gamma-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16. J. Microbiol. Biotechn. 20:763–766.
  • Kunji, E. R. S., Mierau, I., Hagting, A., Poolman, B. and Konings, W. N. (1996). The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek. 70:187–221.
  • Kuriyama, K. and Sze, P. Y. (1971). Blood-brain barrier to H3-gamma-aminobutyric acid in normal and amino oxyacetic acid-treated animals. Neuropharmacology. 10:103–108.
  • Lahteinen, T., Lindholm, A., Rinttila, T., Junnikkala, S., Kant, R., Pietila, T. E., Levonen, K., von Ossowski, I., Solano-Aguilar, G., Jakava-Viljanen, M. and Palva, A. (2014). Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets. Vet Immunol. Immunop. 158:14–25.
  • Lee, B. J., Kim, J. S., Kang, Y. M., Lim, J. H., Kim, Y. M., Lee, M. S., Jeong, M. H., Ahn, C. B. and Je, J. Y. (2010). Antioxidant activity and gamma-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chem. 122:271–276.
  • Leroy, F. and De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Tech. 15:67–78.
  • Li, H. X. and Cao, Y. S. (2010a). Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids. 39:1107–1116.
  • Li, H. X., Li, W. M., Liu, X. H. and Cao, Y. S. (2013). GadA gene locus in Lactobacillus brevis NCL912 and its expression during fed-batch fermentation. FEMS Microbiol.Lett. 349:108–116.
  • Li, H. X., Qiu, T., Gao, D. D. and Cao, Y. S. (2010b). Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino Acids. 38:1439–1445.
  • Lin, Q. (2013). Submerged fermentation of lactobacillus rhamnosus YS9 for gamma-aminobutyric acid (GABA) production. Braz J Microbiol. 44:183–187.
  • Lu, X. X., Chen, Z. G., Gu, Z. X. and Han, Y. B. (2008). Isolation of gamma-aminobutyric acid-producing bacteria and optimization of fermentative medium. Biochem. Eng. J. 41:48–52.
  • Maekawa, T. and Hajishengallis, G. (2014). Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss. J. Periodontal Res. 49:785–791.
  • Matsuyama, K., Yamashita, C., Noda, A., Goto, S., Noda, H., Ichimaru, Y. and Gomita, Y. (1984). Evaluation of isonicotinoyl-gamma-aminobutyric acid (GABA) and nicotinoyl-GABA as pro-drugs of GABA. Chem. Pharm. Bull. 32:4089–4095.
  • McCormick, D. A. (1989). GABA as an inhibitory neurotransmitter in human cerebral-cortex. J.Neurophysiol. 62:1018–1027.
  • Miyazaki, K., Itoh, N., Yamamoto, S., Higo-Yamamoto, S., Nakakita, Y., Kaneda, H., Shigyo, T. and Oishi, K. (2014). Dietary heat-killed Lactobacillus brevis SBC8803 promotes voluntary wheel-running and affects sleep rhythms in mice. Life Sci. 111:47–52.
  • Muller, E. E., Locatelli, V. and Cocchi, D. (1999). Neuroendocrine control of growth hormone secretion. Physiol. Rev. 79:511–607.
  • Nakagawa, T., Yokozawa, T., Kim, H. J. and Shibahara, N. (2005). Protective effects of gamma-aminobutyric acid in rats with streptozotocin-induced diabetes. J.Nutr. Sci.Vitaminol. 51:278–282.
  • Nakamura, H., Takishima, T., Kometani, T. and Yokogoshi, H. (2009). Psychological stress-reducing effect of chocolate enriched with gamma-aminobutyric acid (GABA) in humans: assessment of stress using heart rate variability and salivary chromogranin A. Int. J. Food Sci.Nutr. 60:106–113.
  • Nejati, F., Rizzello, C. G., Di Cagno, R., Sheikh-Zeinoddin, M., Diviccaro, A., Minervini, F. and Gobbett, M. (2013). Manufacture of a functional fermented milk enriched of Angiotensin-I converting Enzyme (ACE)-inhibitory peptides and gamma-amino butyric acid (GABA). LWT-Food Sci. Technol. 51:183–189.
  • Nomura, M., Kimoto, H., Someya, Y. and Suzuki, I. (1999a). Novel characteristic for distinguishing Lactococcuslactis subsp. lactis from subsp. cremoris. Int. J. Syst.Bacteriol. 49:163–166.
  • Nomura, M., Nakajima, I., Fujita, Y., Kobayashi, M., Kimoto, H., Suzuki, I. and Aso, H. (1999b). Lactococcuslactis contains only one glutamate decarboxylase gene. Microbiol-SGM. 145:1375–1380.
  • O'Connor, L. M., Lentjes, M. A. H., Luben, R. N., Khaw, K. T., Wareham, N. J. and Forouhi, N. G. (2014). Dietary dairy product intake and incident type 2 diabetes: a prospective study using dietary data from a 7-day food diary. Diabetologia. 57:909–917.
  • Park, J. Y., Jeong, S. J., and Kim, J. H. (2014a). Characterization of a glutamate decarboxylase (GAD) gene from lactobacillus zymae. Biotechnol.Lett. 36:1791–1799.
  • Park, K. B., and Oh, S. H. (2007a). Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresource. Technol. 98:312–319.
  • Park, K. B. and Oh, S. H. (2007b). Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresource Technol. 98:1675–1679.
  • Park, S. Y., Lee, J. W. and Lim, S. D. (2014b). The probiotic characteristics and GABA production of Lactobacillus plantarum K154 isolated from kimchi. Food Sci.Biotechnol. 23:1951–1957.
  • Powers, M. E., Yarrow, J. F., Mccoy, S. C. and Borst, S. E. (2008). Growth hormone isoform responses to GABA ingestion at rest and after exercise. Med. Sci. Sport Exer. 40:104–110.
  • Ratanaburee, A., Kantachote, D., Charernjiratrakul, W., Penjamras, P. and Chaiyasut, C. (2011). Enhancement of gamma-aminobutyric acid in a fermented red seaweed beverage by starter culture lactobacillus plantarum DW12. Electron. J.Biotechn. 14.
  • Ratanaburee, A., Kantachote, D., Charernjiratrakul, W. and Sukhoom, A. (2013). Selection of gamma-aminobutyric acid-producing lactic acid bacteria and their potential as probiotics for use as starter cultures in Thai fermented sausages (Nham). Int. J. Food Sci. Tech. 48:1371–1382.
  • Savijoki, K., Ingmer, H. and Varmanen, P. (2006). Proteolytic systems of lactic acid bacteria. Appl.Microbiol.Biot. 71:394–406.
  • Seo, M. J., Nam, Y. D., Lee, S. Y., Park, S. L., Sung-Hun, Y. and Lim, S. I. (2013a). Expression and characterization of a glutamate decarboxylase from Lactobacillus brevis 877G producing gamma-aminobutyric acid. Biosci.Biotech.Bioch. 77:853–856.
  • Seo, M. J., Nam, Y. D., Park, S. L., Lee, S. Y., Yi, S. H. and Lim, S. I. (2013b). Gamma-aminobutyric acid production in skim milk co-fermented with Lactobacillus brevis 877G and Lactobacillus sakei 795. Food Sci.Biotechnol. 22:751–755.
  • Shan, Y., Man, C. X., Han, X., Li, L., Guo, Y., Deng, Y., Li, T., Zhang, L. W. and Jiang, Y. J. (2015). Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017. J. Dairy Sci. 98:2138–2149.
  • Shi, F., Xie, Y. L., Jiang, J. J., Wang, N. N., Li, Y. F. and Wang, X. Y. (2014). Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH. Enzyme Microb. Tech. 61–62:35–43.
  • Shimada, M., Hasegawa, T., Nishimura, C., Kan, H., Kanno, T., Nakamura, T., and Matsubayashi, T. (2009). Anti-hypertensive effect of gamma-aminobutyric acid (GABA)-rich Chlorella on high-normal blood pressure and borderline hypertension in placebo-controlled double blind study. Clin Exp Hypertens. 31:342–354.
  • Shin, S. M., Kim, H., Joo, Y., Lee, S. J., Lee, Y. J., Lee, S. J. and Lee, D. W. (2014). Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity. J. Agr. Food Chem. 62:12186–12193.
  • Shizuka, F., Kido, Y., Nakazawa, T., Kitajima, H., Aizawa, C., Kayamura, H. and Ichijo, N. (2004). Antihypertensive effect of gamma-amino butyric acid enriched soy products in spontaneously hypertensive rats. Biofactors. 22:165–167.
  • Siezen, R. J. (1999). Multi-domain, cell-envelope proteinases of lactic acid bacteria. Antonie van Leeuwenhoek. 76:139–155.
  • Siragusa, S., De Angelis, M., Di Cagno, R., Rizzello, C. G., Coda, R. and Gobbetti, M. (2007). Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ.Microb. 73:7283–7290.
  • Smit, G., Smit, B. A. and Engels, W. J. M. (2005). Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 29:591–610.
  • Somkuti, G. A., Renye, J. A. and Steinberg, D. H. (2012). Molecular analysis of the glutamate decarboxylase locus in streptococcus thermophilus ST110. J. Ind.Microbiol.Biot. 39:957–963.
  • Stiles, M. E. and Holzapfel, W. H. (1997). Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36:1–29.
  • Sun, T. S., Zhao, S. P., Wang, H. K., Cai, C. K., Chen, Y. F. and Zhang, H. P. (2009). ACE-inhibitory activity and gamma-aminobutyric acid content of fermented skim milk by lactobacillus helveticus isolated from Xinjiang koumiss in China. Eur. Food Res. Technol. 228:607–612.
  • Suzuki, K., Iijima, K., Sakamoto, K., Sami, M. and Yamashita, H. (2006). A review of hop resistance in beer spoilage lactic acid bacteria. J. I. Brewing. 112:173–191.
  • Teixeira, J. S., Seeras, A., Sanchez-Maldonado, A. F., Zhang, C. G., Su, M. S. W. and Ganzle, M. G. (2014). Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri. Food Microbiol. 42:172–180.
  • Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Legrain-Raspaud, S., Trotin, B., Naliboff, B. and Mayer, E. A. (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 144:1394–U1136.
  • Tsukatani, T., Higuchi, T. and Matsumoto, K. (2005). Enzyme-based microtiter plate assay for gamma-aminobutyric acid: Application to the screening of gamma-aminobutyric acid-producing lactic acid bacteria. AnalyticaChimicaActa. 540:293–297.
  • Tung, Y. T., Lee, B. H., Liu, C. F. and Pan, T. M. (2011). Optimization of culture condition for ACE-I and GABA production by lactic acid bacteria. J. Food Sci. 76:M585–M591.
  • Uenoa, Y., Hayakawaa, K., Takahashib, S. and Odab, K. (1997). Purification and characterization of glutamate decarboxylase from lactobadllus bvevis IFO 12005. Biosci.Biotech.Bioch. 61:1168–1171.
  • Wada, T., Noda, M., Kashiwabara, F., Jeon, H. J., Shirakawa, A., Yabu, H., Matoba, Y., Kumagai, T. and Sugiyama, M. (2009). Characterization of four plasmids harboured in a Lactobacillus brevis strain encoding a novel bacteriocin, brevicin 925A, and construction of a shuttle vector for lactic acid bacteria and escherichia coli. Microbiol-SGM. 155:1726–1737.
  • Waki, N., Matsumoto, M., Fukui, Y. and Suganuma, H. (2014a). Effects of probiotic Lactobacillus brevis KB290 on incidence of influenza infection among schoolchildren: an open-label pilot study. Lett. Appl.Microbiol. 59:565–571.
  • Waki, N., Yajima, N., Suganuma, H., Buddle, B. M., Luo, D., Heiser, A. and Zheng, T. (2014b). Oral administration of Lactobacillus brevis KB290 to mice alleviates clinical symptoms following influenza virus infection. Lett. Appl.Microbiol. 58:87–93.
  • Wu, Q., Law, Y. S. and Shah, N. P. (2015a). Dairy Streptococcus thermophilus improves cell viability of Lactobacillus brevis NPS-QW-145 and its γ-aminobutyric acid biosynthesis ability in milk. Sci. Rep. 2:12885.
  • Wu, Q. and Shah, N. P. (2015b). Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-gamma-aminobutyric acid (GABA)-producing lactic acid bacteria. J. Dairy Sci. 98:790–797.
  • Yamakoshi, J., Fukuda, S., Satoh, T., Tsuji, R., Saito, M., Obata, A., Matsuyama, A. and Kawasaki, T. (2007). Antihypertensive and natriuretic effects of less-sodium soy sauce containing gamma-aminobutyric acid in spontaneously hypertensive rats. Biosci.Biotech.Bioch. 71:165–173.
  • Yang, N. C., Jhou, K. Y. and Tseng, C. Y. (2012). Antihypertensive effect of mulberry leaf aqueous extract containing gamma-aminobutyric acid in spontaneously hypertensive rats. Food Chem. 132:1796–1801.
  • Yang, S. Y., Lin, Q., Lu, Z. X., Lu, F. X., Bie, X. M., Zou, X. K. and Sun, L. J. (2008a). Characterization of a novel glutamate decarboxylase from streptococcus salivarius ssp. thermophilus Y2. J. Chem. Technol.Biot. 83:855–861.
  • Yang, S. Y., Lu, F. X., Lu, Z. X., Bie, X. M., Jiao, Y., Sun, L. J. and Yu, B. (2008b). Production of gamma-aminobutyric acid by streptococcus salivarius subspthermophilus Y2 under submerged fermentation. Amino Acids. 34:473–478.
  • Yang, S. Y., Lu, Z. X., Lu, F. X., Bie, X. M., Sun, L. J. and Zeng, X. X. (2006). A simple method for rapid screening of bacteria with glutamate decarboxylase activities. J. Rapid. Meth. Aut. Mic. 14:291–298.
  • Yokoyama, S., Hiramatsu, J. I. and Hayakawa, K. (2002). Production of gamma-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. J.Biosci. Bioeng. 93:95–97.
  • Yoshimura, M., Toyoshi, T., Sano, A., Izumi, T., Fujii, T., Konishi, C., Inai, S., Matsukura, C., Fukuda, N., Ezura, H. and Obata, A. (2010). Antihypertensive effect of a gamma-aminobutyric acid rich tomato cultivar ‘DG03-9’ in spontaneously hypertensive rats. J. Agr. Food Chem. 58:615–619.
  • Yu, K., Lin, L., Hu, S., Huang, J. and Mei, L. H. (2012). C-terminal truncation of glutamate decarboxylase from Lactobacillus brevis CGMCC 1306 extends its activity toward near-neutral pH. Enzyme Microb. Tech. 50:263–269.
  • Zareian, M., Ebrahimpour, A., Abu Bakar, F., Mohamed, A. K. S., Forghani, B., Ab-Kadir, M. S. B. and Saari, N. (2012). A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods. Int. J. Mol. Sci. 13:5482–5497.
  • Zhang, Y., Song, L., Gao, Q., Yu, S. M., Li, L. and Gao, N. F. (2012). The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl. Microbiol. Biot. 94:1619–1627.
  • Zhao, A., Hu, X., Pan, L. and Wang, X. (2015). Isolation and characterization of a gamma-aminobutyric acid producing strain Lactobacillus buchneri WPZ001 that could efficiently utilize xylose and corncob hydrolysate. Appl.Microbiol.Biot. 99:3191–3200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.